Several types of calcium phosphate/collagen composites, including noncrystalline calcium phosphate/collagen, poorly crystalline carbonate-apatite (PCCA)/collagen, and PCCA + tetracalcium phosphate/collagen composites, were prepared through the mineralization of collagen matrix. The type I collagen was presoaked with a PO(3-)(4) containing solution and then immersed in a Ca(2+) containing solution to allow mineral deposition. The solution of 0.56 M sodium dibasic phosphate (Na(2)HPO(4)) with a pH of nearly 14 was metastable and its crystallization produced Na(2)HPO(4) and sodium tripolyphosphate hexahydrate (Na(5)P(3)O(10)). 6H(2)O), leading to a controlled release of orthophosphate ions during the subsequent mineral precipitation. The development of the composites was investigated in detail. The mineral contributed up to 60-70% of the weight of the final composites. The strength and Young's modulus of the composites in tensile tests overlapped the lower range of values reported for bone. When implanted in muscle tissue, the composite showed biodegradability that was partly through a multinucleated giant cell mediated process. In a bone explant culture model it was observed that bone-derived cells deposited mineralizing collagenous matrix on the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.