Use of cisplatin, a chemotherapeutic agent, is associated with toxicity as a significant number of patients develop a decline in renal function. The mechanisms by which cisplatin produces renal injury are not well understood. It has been suggested that free radical-catalyzed lipid peroxidation can induce apoptosis or necrosis leading to renal injury. This study examined whether low concentrations of cisplatin induce apoptosis in LLC-PK1 cells and whether caspases 1, 2, 3, 8, and 9 are activated during this event. Our results show a dose- and time-dependent induction of apoptosis by micromolar concentrations of cisplatin. Expression of oncogenes c-myc and p53 was induced, and except for caspase 1, all the other caspases tested were activated. Z-VAD, the broad-spectrum inhibitor of caspases, prevented caspase activation and apoptosis, but not c-myc and p53 induction. On the other hand, N-acetylcysteine prevented cisplatin-induced apoptosis as well as c-myc induction but not p53 induction. The antioxidant trolox also prevented cisplatin-induced apoptosis. The results suggest that antioxidants and caspase inhibitors may alleviate cisplatin-associated nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.