We hypothesized that fluoride partly acts by changing the levels of circulating calcium-regulating hormones and skeletal growth factors. The effects of oral fluoride on 24 female, Dutch-Belted, young adult rabbits were studied. The rabbits were divided into two study groups, one control and the other receiving about 16 mg fluoride/rabbit/day in their drinking water. After 6 months of fluoride dosing, all rabbits were euthanized and bone and blood samples were taken for analyses. Fluoride treatment increased serum and bone fluoride levels by over an order of magnitude (P < 0.001), but did not affect body weight or the following serum biochemical variables: urea, creatinine, phosphorus, total protein, albumin, bilirubin, SGOT, or total alkaline phosphatase. No skeletal fluorosis or osteomalacia was observed histologically, nor did fluoride affect serum PTH or Vitamin D metabolites (P > 0.4). BAP was increased 37% (P < 0.05) by fluoride; serum TRAP was increased 42% (P < 0.05); serum IGF-1 was increased 40% (P < 0.05). Fluoride increased the vertebral BV/TV by 35% (P < 0.05) and tibial ash weight by 10% (P < 0.05). However, the increases in bone mass and bone formation were not reflected in improved bone strength. Fluoride decreased bone strength by about 19% in the L5 vertebra (P < 0.01) and 25% in the femoral neck (P < 0. 05). X-ray diffraction showed altered mineral crystal thickness in fluoride-treated bones (P < 0.001), and there was a negative association between crystal width and fracture stress of the femur (P < 0.02). In conclusion, fluoride's effects on bone mass and bone turnover were not mediated by PTH. IGF-1 was increased by fluoride and was associated with increased bone turnover, but was not correlated with bone formation markers. High-dose fluoride treatment did not improve, but decreased, bone strength in rabbits, even in the absence of impaired mineralization.
In response to recent concerns about the effect of water fluoridation on hip fracture rates, we studied the influence of fluoride intake on bone strength. Four groups of rats were fed a low-fluoride diet ad libitum and received 0, 5, 15, or 50 ppm of fluoride in their drinking water. Animals were euthanized after 3, 6, 12, or 18 months of treatment. Mechanical strength of the right femur was measured by three-point bending. Fluoride content for the left femur was measured, and static histomorphometric measurements were made on a lumbar vertebra. Femoral failure load was not significantly decreased in rats treated for 3 and 6 months, but was decreased as much as 23% in rats treated 12 and 18 months at 50 ppm fluoride. Extrapolation from regression equations predicted that older rats lose 36% of femoral bone strength when bone fluoride content is increased from 0 to 10,000 ppm, while younger rats will lose only 15%. Thus, the decreased strength appeared to be due to the combined effects of fluoride intake and age on bone tissue and was not associated with a decrease in bone density or mineralization defects. There were only small effects of fluoride on bone histomorphometry. Fluoride intake at high levels had no negative effects on bone mineralization. Fluoride intake was associated with slight increases in trabecular bone volume and trabecular thickness, but these effects could not be demonstrated consistently. The mechanism by which large amounts of fluoride affect bone strength more severely in older animals is unknown.
Continuous positive airway pressure (CPAP) administered to tracheostomized rabbits and ferrets for 4 days or 2 wk suppresses bronchial reactivity in vivo and suppresses airway reactivity in lobes and tracheal segments isolated from these animals. In vitro studies of canine tracheal smooth muscle tissues indicate that mechanical loading suppresses the activation of the growth regulatory kinase, Akt, and that Akt is a negative regulator of smooth muscle differentiation. The transduction of mechanical signals in the tracheal tissues in vitro is mediated by integrin-associated adhesion complexes. To determine whether airway responsiveness and Akt activation are modulated by mechanical loads applied for short time periods to the airways of living animals in vivo, mice were mechanically ventilated for 2 h with high (5 cmH2O) or low (0-1 cmH2O) positive end-expiratory pressure (PEEP) and then ventilated at low PEEP for 30 min. Ventilation of mice with PEEP in vivo for 2 h depressed airway responsiveness to methacholine measured in vivo subsequent to the PEEP treatment. Airway narrowing in vitro in intraparenchymal airways in isolated lung slices and contractile responses of isolated tracheal segments in vitro were suppressed for at least 6 h subsequent to the in vivo exposure to PEEP. Tracheal segments isolated from high PEEP-treated mice exhibited significantly lower levels of Akt activation than tracheae from low PEEP-treated mice. The results indicate that mechanical loads imposed in vivo result in physiological and biochemical changes in the airway tissues after a relatively short 2-h period of in vivo loading.
IGF-I promotes growth during postnatal development via both endocrine and autocrine actions. In pcd mice (pcd/ pcd), we previously found that IGF-I mRNA expression was decreased in cerebellar Purkinje cells as they underwent apoptosis. To investigate the endocrine function of IGF-I, we examined hepatic IGF-I mRNA by Northern hybridization, circulating IGF-I peptide by radioimmunoassay, and circulating IGFBP by Western ligand blot in pcd mice. At postnatal days (D) 17 and 24, hepatic IGF-I mRNA and circulating IGF-I and IGF-II concentrations were normal in pcd mice. From D45, both hepatic IGF-I mRNA and circulating IGF-I concentrations decreased. The decrease in circulating IGF-I concentrations was accompanied by a simultaneous increase in circulating IGF-II concentrations in both the D45 and adult pcd mice. An early decrease in the circulating IGFBP-3 levels and an increase in the IGFBP-2 levels were observed at D17 and were followed by decreases in both IGFBPs at D45 and in the adult. Therefore, after the cerebellar neurodegeneration, there was an overall decrease in IGF-I gene expression in pcd mice. Our results suggest that the decrease in IGF-I gene expression may contribute to growth deficiency and multiple system degeneration in pcd mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.