In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.
A stationary edge-localized mode (ELM)-absent H-mode regime, with an electrostatic edge coherent mode (ECM) which resides in the pedestal region, has been achieved in the EAST tokamak recently. This regime allows the operation of a nearly fully noninductive long pulse (>15 s), exhibiting a relatively high pedestal and good global energy confinement with H 98,y2 near 1.2, and excellent impurity control. Furthermore, this regime is mostly obtained with a 4.6 GHz lower hybrid current drive (LHCD) or counter-current neutral beam injection (NBI), plus electron cyclotron resonance heating, and an extensive lithium wall coating. This stationary ELM-absent H-mode regime transits to a stationary small ELM H-mode regime, and upon additional heating power from the 2.45 GHz LHCD, an ion cyclotron resonant frequency or co-current NBI is applied (under 4.6 GHz LHCD heating background). A slight change of the plasma configuration also makes the small ELMs reappear. The experimental observations suggest that a long-pulse ELM-absent regime can be induced by the ECM, which exhibits strong electrostatic fluctuations and may provide a channel for continuous particle (especially impurities) and heat exhaust across the pedestal. The ECM exists in the collisionality of ν * e = 2.5-4 and the pressure gradient |∇P| = | dP dρ | = 100-200 (kPa), which is in good agreement with the previous simulation of GYRO. This ELM-absent H-mode regime with ECM may offer a suitable candidate for high-performance, steady-state H-mode operation in future fusion reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.