This article presents a numerical analysis of laser-welded flange pipe joints. The presented results concern the welding of low carbon S235JR and stainless 316L steels using a CO2 laser in lap and fillet joint configurations. The estimation of welding parameters was achieved using Simufact Welding software and numerical simulation, where output power, feed rate, efficiency and intensity distribution (Gaussian parameter) were analysed. In accordance with the established model, a thermo-mechanical simulation was performed. The calculated joint geometries show good agreement with experiments; therefore, the obtained results were used to study selected joint properties of both joint types. Stress-strain distribution was estimated on the basis of thermomechanical analysis. Weld bead geometry obtained from numerical simulation was compared with the results from trial joints. The numerical model established for both joint configurations shows good agreement with experimental results and were assumed to be accurate. The results of the performed analysis shown some advantages of the use of this configuration of lap joints in flange pipe joints.
While lasers are widely used across various industries, including woodworking, few studies to date have addressed the issue of cutting fresh wood. In the present investigation, wood stemming from fresh tree branches was cut at different laser powers and beam travel speeds. A fiber laser and a CO2 laser were used for the research. The cellular structures of the cut surfaces were examined, with some of them found to be covered with a layer of compacted, charred cells. This may be a favorable phenomenon, preventing the invasion of pathogens via the wounds caused by laser beam branch cutting in nurseries, plantations, and orchards.
This work presents the laser welding of dissimilar X12CrCoWVNbN12-2-2 and X10CrNi18-10 steels. This system is of interest, as laser welding offers new flexibility in the joining of metals and laser welds (LWs) and are usually of high quality; they are obtained only after the optimization of process parameters. The aim of the work was to investigate the microstructure, chemical composition, and hardness changes of laser-welded steels. After laser welding, two zones were generated in the processed materials: a fusion zone and a heat-affected zone. Due to solidification, a refinement of the microstructure occurred in the fusion zone. Examinations of the chemical composition of particular melted areas showed the occurrence of Nb-rich precipitations. The laser welding of steels led to increased hardness in the fusion zone (about 240-530 HV0.3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.