Introduction After a vaccination, patients frequently have clinical symptoms of pain and swelling over the injection area which usually resolve 2–3 days after the injection. If the symptoms do not improve, a shoulder injury related to vaccine administration (SIRVA) will be considered, perhaps related to an improper injection technique. Herein we report our first case of a SIRVA after a Sinovac COVID-19 vaccination which occurred due to deep penetration and direction of the needle. The clinical symptoms of the patient improved after treatment with combined oral non-steroidal anti-inflammatory drugs and a short course of intravenous antibiotic. Case presentation A 52-year-old Thai male without prior shoulder pain had a Sinovac COVID-19 vaccination at his right shoulder. The injection was given by a nurse using a 27-gauge needle, 1.5 inches in length. The injection landmark was 3 finger breadths below the midlateral edge of the acromial process. The direction of the needle was 45° to the skin cephalad. Three days after receiving the vaccine the patient began to have right shoulder pain with limited range of motion and acute fever. He was admitted for medical treatment which his clinical symptoms gradually improved. Conclusion We report a case of subacromial-subcoracoid-subdeltoid bursitis following a Sinovac COVID-19 vaccine injection. This condition is rare, and usually related to an incorrect vaccination technique. To avoid this complication, nurses should identify the correct landmark, use an appropriate needle length, and point the needle in the correct direction.
Background: Lateral meniscal repair can endanger the nearby neurovascular structure (peroneal nerve or popliteal artery). To our knowledge, there have been no studies to evaluate the danger zone of all-inside meniscal repair through the anteromedial (AM) and anterolateral (AL) portals in relation to the medial and lateral edges of the popliteal tendon (PT). Purpose: To establish the risk of neurovascular injury and the danger zone in repairing the lateral meniscus in relation to the medial and lateral edges of the PT. Study Design: Descriptive laboratory study. Methods: Using axial magnetic resonance imaging (MRI) studies at the level of the lateral meniscus, lines were drawn to simulate a straight, all-inside meniscal repair device, drawn from the AM and AL portals to both the medial and lateral edges of the PT. In cases in which the line passed through the neurovascular structure, a risk of iatrogenic neurovascular injury was deemed, and measurements were made to determine the danger zones of neurovascular injury in relation to the medial or lateral edges of the PT. Results: Axial MRI images of 240 adult patients were reviewed retrospectively. Repairing the body of the lateral meniscus through the AM portal had a greater risk of neurovascular injury than repairs made through the AL portal in relation to the medial edge of the PT ( P = .006). The danger zone in repairing the lateral meniscus through the AM portal extended 1.82 ± 1.68 mm laterally from the lateral edge of the PT and 3.13 ± 2.45 mm medially from the medial edge of the PT. Through the AL portal, the danger zone extended 2.81 ± 1.94 mm laterally from the lateral edge of the PT and 1.39 ± 1.53 mm medially from the medial edge of the PT. Conclusion: Repairing the lateral meniscus through either the AM or the AL portals in relation to the PT can endanger the peroneal nerve or popliteal artery. Clinical Relevance: The surgeon can minimize the risk of iatrogenic neurovascular injury in lateral meniscal repair by avoiding using the all-inside meniscal device in the danger zone area as described in this study.
Background: Lateral meniscal repair using an all–inside meniscal repair device involves a risk of iatrogenic peroneal nerve injury. To our knowledge, there have been no previous studies evaluating the risk of injury with the knee in the standard operational figure-of-4 position with joint dilatation in arthroscopic lateral meniscal repair. Purpose: To evaluate and compare the risk of peroneal nerve injury and establish the safe and danger zones in repairing the lateral meniscus through the anteromedial, anterolateral, or transpatellar portal in relation to the medial and lateral borders of the popliteal tendon (PT). Study Design: Descriptive laboratory study. Methods: Using axial magnetic resonance imaging (MRI) studies of knees in the figure-of-4 position with joint fluid dilatation at the level of the lateral meniscus, we drew direct lines to simulate a straight all–inside meniscal repair device deployed from the anteromedial, anterolateral, and transpatellar portals to the medial and lateral borders of the PT. If the line passed through or touched the peroneal nerve, a risk of iatrogenic peroneal nerve injury was noted, and measurements were made to determine the safe and danger zones for peroneal nerve injury in relation to the medial or lateral border of the PT. Results: Axial MRI images of 29 adult patients were reviewed. Repairing the lateral meniscus through the anteromedial portal in relation to the lateral border of the PT and through the anterolateral portal in relation to the medial border of the PT had a 0% risk of peroneal nerve injury. The “safe zone” in relation to the medial border of the PT through the anterolateral portal was between the medial border of the PT and 9.62 ± 4.60 mm medially from the same border. Conclusion: It is safe to repair the body of the lateral meniscus through the anteromedial portal in the area lateral to the lateral border of the PT or through the anterolateral portal in the area medial to the medial border of the PT. Clinical Relevance: There is a risk of iatrogenic peroneal nerve injury during lateral meniscal repair. Thus, we recommend repairing the lateral meniscal tissue through the anteromedial portal in the area lateral to the lateral border of the PT and using the anterolateral portal in the area medial to the medial border of the PT, as neither of these approaches resulted in peroneal nerve injury. Additionally, the surgeon can decrease this risk by repairing the meniscal tissue using the all–inside meniscal device in the safe zone area.
Background: Opening-wedge valgus high tibial osteotomy (OWHTO) is a common surgical procedure used to treat symptomatic varus femorotibial malalignment in adults. Several intraoperative methods are available to determine the correct correction alignment, but achieving the desired alignment correction is difficult. Purpose/Hypothesis: The aim of this study was to assess a 4-reference K-wire technique that is relatively easy to apply and can reliably assess actual alignment correction during surgery after determination of the desired corrective angle. We hypothesized that this technique would accurately determine the coronal correction and properly maintain the tibial slope intraoperatively during OWHTO. Study Design: Descriptive laboratory study. Methods: This study was conducted using 12 fresh-frozen cadavers; 12 randomly chosen knees were corrected 5° and 12 knees were corrected 10° by use of 2 coronal and 2 sagittal K-wires. The first and second coronal K-wires were drilled at 4 cm and 1 to 2 cm below the medial joint line toward the tibiofibular joint, respectively. The angles of these 2 coronal K-wires were measured before and after the gap was opened via a modified goniometer. The difference in the angle formed by these 2 coronal K-wires from before to after opening of the gap was the alignment correction angle. In addition, 2 sagittal K-wires were drilled parallel to each other before the gap opening above and below the osteotomy site. Ensuring that these 2 sagittal K-wires remained parallel after the gap opening confirmed that the tibial slope had been maintained. The paired t test was used to compare the desired alignment corrections and the different angles measured between the pre- and postoperative radiographic alignments. Results: The mean ± SD differences in angles between the pre- and postoperative alignments of the 5° and 10° corrections were 5.04° ± 0.68° and 10.03° ± 0.68°, respectively, indicating no statistically significant differences between pre- and postoperative alignment in both groups. As well, no significant difference was noted between the pre- and postoperative medial tibial slope ( P = .54). Conclusion: The coronal alignment correction and maintenance of the tibial slope using the 4-reference K-wire technique was found to be highly accurate and reliable. Clinical Relevance: Achieving the correct angle in OWHTO is difficult, and the 4-reference K-wire technique provides an easier and more reliable way to obtain the correct angle. This technique can be used in most hospital settings, with no need for expensive equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.