Bacterial luciferase proceeds bioluminescent reaction by generating a reactive intermediate of flavin C4a‐oxygen adduct. The intermediate is first generated in a protonated form of flavin C4a‐hydroperoxide, which is unable to react with an aldehyde. The active site His44 functions as an essential proton abstractor to convert the flavin C4a‐hydroperoxide to a bioluminescent active flavin C4a‐peroxide.
Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme‐based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human‐ and microbe‐related cellular metabolites including, amino acids, d‐glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro‐ and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.
Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase levels of a pool of sugar-phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells; demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase, GDH) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.