Possible structures of the carbon-nitrogen clusters of the form C(m)N(n) (m = 1-4, n = 1-4, m + n = 2-5) were predicted for the neutral, anion, and cation species in the singlet, doublet, and triplet states, whenever appropriate. The calculations were performed at the G3, MP2(fc)/6-311+G*, and B3LYP/6-311+G* levels of theory. Several molecular properties related to the experimental data--such as the electronic energy, equilibrium geometry, binding energy, HOMO-LUMO gap (HLG), and spin contamination --were calculated. In addition the vertical electron attachment, the adiabatic electron affinity, and vertical ionization energy, of the neutral clusters were calculated. Most of the predicted lowest energy structures were linear, whereas bent structures became more stable with the increase of the cluster size and increase of the number of the N atoms. In most of the predicted lowest energy structures, the N atom prefers the terminal position with acetylenic bond. The calculated BE of the predicted clusters increases with the increase of the cluster size for the neutral and cation clusters but decreases with the increase of the cluster size for the anion clusters. The predicted clusters are characterized by high HLG of about 11 eV on the average, with that of the anion clusters is smaller than that for the neutral and cation clusters. It is concluded then that the anion clusters are less stable than the corresponding neutral and cation clusters. Finally, the N(2) loss reaction is treated.
We performed a G3 investigation of the possible stable structures of silicon-nitrogen SinNm clusters where m = 1-4, n = 1-4, m + n = 2-5. We considered the neutral, anionic and cationic molecular species in the singlet, doublet and triplet states, as appropriate. For neutral clusters, our data confirm previous DFT and post Hartree-Fock findings. For charged clusters, our results represent predictions. Several molecular properties related to the experimental data, such as the electronic energy, equilibrium geometry, binding energy (BE), HOMO-LUMO gap (HLG), and spin contamination mathematical left angle bracket S₂ mathematical right angle bracket were computed. We also derived the vertical electron attachment (VEA), the adiabatic electron affinity (AEA), and the vertical ionization energy (VIE), of the neutral clusters. Similar to their carbon-nitrogen counterparts, the lowest energy structures for neutral and cationic silicon-nitrogen clusters are found to be linear or quasilinear. In contrast, anionic silicon-nitrogen clusters tend to form 3D structures as the size of the cluster increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.