Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.
Time series forecasting gets much attention due to its impact on many practical applications. Higher-order neural network with recurrent feedback is a powerful technique which used successfully for forecasting. It maintains fast learning and the ability to learn the dynamics of the series over time. For that, in this paper, we propose a novel model which is called Ridge Polynomial Neural Network with Error-Output Feedbacks (RPNN-EOFs) that combines the properties of higher order and error-output feedbacks. The wellknown MackeyGlass time series is used to test the forecasting capability of RPNN-EOFS. Simulation results showed that the proposed RPNN-EOFs provides better understanding for the MackeyGlass time series with root mean square error equal to 0.00416. This re-sult is smaller than other models in the literature. Therefore, we can conclude that the RPNN-EOFs can be applied successfully for time series forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.