Background: Organic solvents used for extraction of tacrolimus from whole blood samples lower the apparent affinity of the antibody used in a diagnostic immunoassay, thereby affecting the detection limit. Methods: We used in vitro recombinant antibody engineering to screen and isolate clones from diverse libraries with mutagenic complementarity regions (CDRs) from tacrolimus 1-60-46 hybridoma cell line, with improved binding to tacrolimus in the presence of 10% methanol organic solvent solution. Results: We isolated a number of clones with mutations in variable heavy (VH) CDR 2, variable light (VL) CDR 1, and VL CDR 3 with improved binding. Various combinatorial pairings constructed from these individual mutations contained >10-fold improvements in both the dissociation rate and overall equilibrium affinity constants. Selected clones produced as IgG have increased functional sensitivity, with a 3- to 6-fold reduction in the limit of detection relative to the parental tacrolimus 1-60-46 monoclonal antibody in the Architect® Tacrolimus immunodiagnostic assay. Conclusions: The recent advent of recombinant in vitro antibody display technologies in general, and yeast surface display in particular, allows the flexibility to engineer new or augment specific analytical characteristics, such as affinity, specificity, or stability, into previously isolated and otherwise desirable antibodies to enhance assay performance. These in vitro selections can also be performed under conditions meant to mimic the assay in which the reagent will ultimately be used, to increase the likelihood of successful assay development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.