The use of nanomaterials in agriculture as nanofertilizers, nanopesticides, or nano-enabled sensors to increase crop yield is gaining increasing interest.
In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.
With increasing global population, innovations in agriculture will be essential for a sustainable food supply. We compare commercial CuO NP to synthesized Cu 3 (PO 4 ) 2 •3H 2 O nanosheets to determine the influence of coordinating anion, particle morphology, and dissolution profile on Fusarium oxysporum f. sp. niveum induced disease in watermelon. Copper dissolution in organic acid solutions that mimic complexing agents found in plants was increased by 2 orders of magnitude relative to water. Cu 3 (PO 4 ) 2 •3H 2 O nanosheets showed a rapid initial dissolution, with equilibration after 24 h; CuO NP exhibited continuous particle dissolution. In a greenhouse study, Cu 3 (PO 4 ) 2 •3H 2 O nanosheets at 10 mg/L significantly repressed fungal disease as measured by yield and by a 58% decrease in disease progress. Conversely, CuO NP only yielded significant effects on disease at 1000 mg/L. In field studies, similar enhanced disease suppression was noted for Cu 3 (PO 4 ) 2 •3H 2 O nanosheets, although biomass and yield effects were variable. The method of application was a significant factor in treatment success, with the dip method being more effective than foliar spray; this is likely due to homogeneity of coverage during treatment. The data show that Cu-based nanoscale materials can be an effective and sustainable strategy in the crop disease management but that particle characteristics such as morphology, coordination environment, and dissolution profile will be important determinants of success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.