Background: Early life stress (ELS) is cited as a risk for mood and anxiety disorders, potentially through altered serotonin neurotransmission. We examined the effects of ELS, utilizing the variable foraging demand (VFD) macaque model, on adolescent monoamine metabolites. We sought to replicate an increase in cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) observed in two previous VFD cohorts. We hypothesized that elevated cisternal 5-HIAA was associated with reduced neurotrophic effects, conceivably due to excessive negative feedback at somatodendritic 5-HT1A autoreceptors. A putatively decreased serotonin neurotransmission would be reflected by reductions in hippocampal volume and white matter (WM) fractional anisotropy (FA).Methods: When infants were 2–6 months of age, bonnet macaque mothers were exposed to VFD. We employed cisternal CSF taps to measure monoamine metabolites in VFD (N = 22) and non-VFD (N = 14) offspring (mean age = 2.61 years). Metabolites were correlated with hippocampal volume obtained by MRI and WM FA by diffusion tensor imaging in young adulthood in 17 males [10 VFD (mean age = 4.57 years)].Results: VFD subjects exhibited increased CSF 5-HIAA compared to non-VFD controls. An inverse correlation between right hippocampal volume and 5-HIAA was noted in VFD- but not controls. CSF HVA and MHPG correlated inversely with hippocampal volume only in VFD. CSF 5-HIAA correlated inversely with FA of the WM tracts of the anterior limb of the internal capsule (ALIC) only in VFD.Conclusions: Elevated cisternal 5-HIAA in VFD may reflect increased dorsal raphe serotonin, potentially inducing excessive autoreceptor activation, inducing a putative serotonin deficit in terminal fields. Resultant reductions in neurotrophic activity are reflected by smaller right hippocampal volume. Convergent evidence of reduced neurotrophic activity in association with high CSF 5-HIAA in VFD was reflected by reduced FA of the ALIC.
Background: Maternal response to allostatic overload during infant rearing may alter neurobiological measures in grown offspring, potentially increasing susceptibility to mood and anxiety disorders. We examined maternal cerebrospinal fluid (CSF) glutamate response during exposure to variable foraging demand (VFD), a bonnet macaque model of allostatic overload, testing whether activation relative to baseline predicted concomitant CSF elevations of the stress neuropeptide, corticotropin-releasing factor. We investigated whether VFD-induced activation of maternal CSF glutamate affects maternal–infant attachment patterns and offspring CSF 5-hydroxyindoleacetic acid concentrations. Methods: Mother–infant dyads were exposed to the “VFD stressor,” a paradigm in which mothers experience 16 weeks of foraging uncertainty while rearing their infant offspring. Through staggering the infant age of VFD onset, both a cross-sectional design and a longitudinal design were used. Maternal CSF glutamate and glutamine concentrations post-VFD exposure were cross-sectionally compared to maternal VFD naive controls. Proportional change in concentrations of maternal glutamate (and glutamine), a longitudinal measure, was evaluated in relation to VFD-induced elevations of CSF corticotropin-releasing factor. The former measure was related to maternal–infant proximity scores obtained during the final phases of VFD exposure. Maternal glutamatergic response to VFD exposure was used as a predictor variable for young adolescent offspring CSF metabolites of serotonin, dopamine, and norepinephrine. Results: Following VFD exposure, maternal CSF glutamate concentrations correlated positively with maternal CSF CRF concentrations. Activation relative to baseline of maternal CSF glutamate concentrations following VFD exposure correlated directly with a) increased maternal-infant proximity during the final phases of VFD and b) offspring CSF concentrations of monoamine metabolites including 5-hydroxyindoleacetic acid, which was elevated relative to controls. Conclusions: Activation of maternal CSF glutamate in response to VFD-induced allostasis is directly associated with elevations of maternal CSF corticotropin-releasing factor. Maternal CSF glutamate alterations induced by VFD potentially compromise serotonin neurotransmission in grown offspring, conceivably modeling human vulnerability to treatment-resistant mood and anxiety disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.