Wireless networks are built upon a shared medium that makes it easy for adversaries to launch jamming-style attacks. These attacks can be easily accomplished by an adversary emitting radio frequency signals that do not follow an underlying MAC protocol. Jamming attacks can severely interfere with the normal operation of wireless networks and, consequently, mechanisms are needed that can cope with jamming attacks. In this paper, we examine radio interference attacks from both sides of the issue: first, we study the problem of conducting radio interference attacks on wireless networks, and second we examine the critical issue of diagnosing the presence of jamming attacks. Specifically, we propose four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluate their effectiveness in terms of how each method affects the ability of a wireless node to send and receive packets. We then discuss different measurements that serve as the basis for detecting a jamming attack, and explore scenarios where each measurement by itself is not enough to reliably classify the presence of a jamming attack. In particular, we observe that signal strength and carrier sensing time are unable to conclusively detect the presence of a jammer. Further, we observe that although by using packet delivery ratio we may differentiate between congested and jammed scenarios, we are nonetheless unable to conclude whether poor link utility is due to jamming or the mobility of nodes. The fact that no single measurement is sufficient for reliably classifying the presence of a jammer is an important observation, and necessitates the development of enhanced detection schemes that can remove ambiguity when detecting a jammer. To address this need, we propose two enhanced detection protocols that employ consistency checking. The first scheme employs signal strength measurements as a reactive consistency check for poor packet delivery ratios, while the second scheme employs location information to serve as the consistency check. Throughout our discussions, we examine the feasibility and effectiveness of jamming attacks and detection schemes using the MICA2 Mote platform.
Abstract-One of the most notable challenges threatening the successful deployment of sensor systems is privacy. Although many privacy-related issues can be addressed by security mechanisms, one sensor network privacy issue that cannot be adequately addressed by network security is source-location privacy. Adversaries may use RF localization techniques to perform hop-by-hop traceback to the source sensor's location. This paper provides a formal model for the source-location privacy problem in sensor networks and examines the privacy characteristics of different sensor routing protocols. We examine two popular classes of routing protocols: the class of flooding protocols, and the class of routing protocols involving only a single path from the source to the sink. While investigating the privacy performance of routing protocols, we considered the tradeoffs between location-privacy and energy consumption. We found that most of the current protocols cannot provide efficient source-location privacy while maintaining desirable system performance. In order to provide efficient and private sensor communications, we devised new techniques to enhance source-location privacy that augment these routing protocols. One of our strategies, a technique we have called phantom routing, has proven flexible and capable of protecting the source's location, while not incurring a noticeable increase in energy overhead. Further, we examined the effect of source mobility on location privacy. We showed that, even with the natural privacy amplification resulting from source mobility, our phantom routing techniques yield improved source-location privacy relative to other routing methods.
Digital fingerprinting is a technique for identifying users who might try to use multimedia content for unintended purposes, such as redistribution. These fingerprints are typically embedded into the content using watermarking techniques that are designed to be robust to a variety of attacks. A cost-effective attack against such digital fingerprints is collusion, where several differently marked copies of the same content are combined to disrupt the underlying fingerprints. In this paper, we investigate the problem of designing fingerprints that can withstand collusion and allow for the identification of colluders. We begin by introducing the collusion problem for additive embedding. We then study the effect that averaging collusion has upon orthogonal modulation. We introduce an efficient detection algorithm for identifying the fingerprints associated with K colluders that requires O(K log(n/K)) correlations for a group of n users. We next develop a fingerprinting scheme based upon code modulation that does not require as many basis signals as orthogonal modulation. We propose a new class of codes, called anti-collusion codes (ACC), which have the property that the composition of any subset of K or fewer codevectors is unique. Using this property, we can therefore identify groups of K or fewer colluders. We present a construction of binary-valued ACC under the logical AND operation that uses the theory of combinatorial designs and is suitable for both the on-off keying and antipodal form of binary code modulation. In order to accommodate n users, our code construction requires only O(√ n) orthogonal signals for a given number of colluders. We introduce four different detection strategies that can be used with our ACC for identifying a suspect set of colluders. We demonstrate the performance of our ACC for fingerprinting multimedia and identifying colluders through experiments using Gaussian signals and real images.
As sensor-driven applications become increasingly integrated into our lives, issues related to sensor privacy will become increasingly important. Although many privacy-related issues can be addressed by security mechanisms, one sensor network privacy issue that cannot be adequately addressed by network security is confidentiality of the source sensor's location. In this paper, we focus on protecting the source's location by introducing suitable modifications to sensor routing protocols to make it difficult for an adversary to backtrack to the origin of the sensor communication. In particular, we focus on the class of flooding protocols. While developing and evaluating our privacy-aware routing protocols, we jointly consider issues of location-privacy as well as the amount of energy consumed by the sensor network. Motivated by the observations, we propose a flexible routing strategy, known as phantom routing, which protects the source's location. Phantom routing is a two-stage routing scheme that first consists of a directed walk along a random direction, followed by routing from the phantom source to the sink. Our investigations have shown that phantom routing is a powerful technique for protecting the location of the source during sensor transmissions.
Abstract-The wireless medium contains domain-specific information that can be used to complement and enhance traditional security mechanisms. In this paper we propose ways to exploit the spatial variability of the radio channel response in a rich scattering environment, as is typical of indoor environments. Specifically, we describe a physical-layer authentication algorithm that utilizes channel probing and hypothesis testing to determine whether current and prior communication attempts are made by the same transmit terminal. In this way, legitimate users can be reliably authenticated and false users can be reliably detected. We analyze the ability of a receiver to discriminate between transmitters (users) according to their channel frequency responses. This work is based on a generalized channel response with both spatial and temporal variability, and considers correlations among the time, frequency and spatial domains. Simulation results, using the ray-tracing tool WiSE to generate the timeaveraged response, verify the efficacy of the approach under realistic channel conditions, as well as its capability to work under unknown channel variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.