An isocratic reversed-phase high performance liquid chromatographic method has been developed and validated to simultaneously determine nicotinic acid, pravastatin sodium, rosuvastatin calcium, atorvastatin calcium, pitavastatin calcium, lovastatin sodium and simvastatin sodium in focus on counterfeit drug detection. Thin-layer chromatography, nuclear magnetic resonance and mass spectrometry have been additionally performed to verify the identification of adulterants of counterfeit herbal medicines. Chromatographic separation was carried out on Inertsil® ODS-3 C18 (4.6 × 150 mm, 5 μm) with isocratic mobile phase elution containing a mixture of acetonitrile: methanol: 25 mM potassium dihydrogen phosphate buffer, pH 2.86 adjusted with 0.1 M o-phosphoric acid (48: 30: 22, v/v/v), at a flow rate of 1 mL/min and with UV detection at 238 nm. The design of experiment methodology, Plackett–Burman and Box–Behnken designs, was used to screen and optimize the mobile phase composition. The validation of the method was also carried out under the International Conference on Harmonization guidelines. The developed method was sensitive, accurate, simple, economical and highly robust, in addition to the comprehensiveness and novelty of this method for separating the seven drugs. The results were statistically compared with the reference methods used Student’s t-test and variance ratio F-test at P < 0.05.
An isocratic reversed-phase high-performance liquid chromatographic method has been developed and validated for the simultaneous determination of aspirin, prasugrel HCl and clopidogrel bisulfate in the presence of clopidogrel-related compound (impurity-A) in focus on counterfeit. This method was used to determine counterfeited antiplatelet drugs in two substandard Indian pharmaceutical products sold on the market in Yemen and two traditional herbal medicines sold on the market in China. Thin layer chromatography and mass spectrometry of counterfeit herbal medicines have additionally been carried out to verify the identification of adulterants. Chromatographic separation was performed on Inertsil ® ODS-3 C18 (4.6 × 250 mm, 5 μm) with isocratic mobile phase elution containing a mixture of acetonitrile: (25 mM) potassium dihydrogen phosphate buffer, pH 2.7 adjusted with 0.1 M o-phosphoric acid (79: 21, v/v), at a flow rate of 1 mL/min and UV detection at 220 nm. Designs of experiment methodology, Plackett–Burman and Box–Behnken designs were used for the screening and optimization of the mobile phase composition. The method validation was also performed in accordance with the International Council on Harmonization (ICH) guidelines. The method developed for routine analysis was found to be sensitive, simple, accurate and highly robust. The results were statistically compared to reference methods using Student’s t-test and variance ratio F-test at P < 0.05.
Background Drug counterfeiting is a rising problem due to difficulties with identifying counterfeit drugs and the lack of regulations and legislation in developing countries. Objective This study aims to develop a robust and economic reversed phase high performance liquid chromatography (LC) method for simultaneously determining metformin HCl, vildagliptin, saxagliptin, alogliptin benzoate, sitagliptin phosphate monohydrate, and linagliptin to target counterfeiting. Methods Plackett-Burman (PB) and Box-Behnken (BB) designs were used to screen and optimize the mobile phase composition. Chromatographic separation was carried out on an Inertsil® ODS-3 C18 column with isocratic elution mode and the mobile phase was a mixture of acetonitrile–methanol–ammonium formate buffer, pH 3.5 (25:10:65, v/v/v). This method was applied to analyze synthetic drugs in three traditional Chinese and Indian herbal medicines. To identify the adulterants, thin-layer chromatography (TLC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used on counterfeit herbal medicines. Results The developed method is sensitive, simple, rapid, economical, accurate, and highly robust. Student's t-test and variance ratio (F-test at P < 0.05) were used to compare the results statistically with the reference methods. Conclusion The study found that the analyzed herbal medicines were adulterated with metformin and the quantification of anti-diabetic counterfeits was therefore applied. Highlights This study determined counterfeited anti-diabetic drugs in Indian and Chinese traditional herbal medicines(THMs). Design-of-experiment, PB, and BB designs were used. Method validation was also performed in accordance with the International Conference on Harmonization guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.