A cycle model of a gas turbine power plant with effect intercooler along with a detailed parametric study is presented in this paper. The effects of parameter (design and operation condition) on the power output, compression work, specific fuel consumption and thermal efficiency are evaluated. In this study, the implementation of intercooling increases the power generating efficiency of the suggested gas turbine power plant when compared to the non-intercooled gas turbine power plant, configurations. Intercooler gas turbine cycle is analyzed and a new approach for improvement of their thermodynamic performances based on first law of thermodynamics is presented. Different effected parameters are simulated, including different compressor pressure ratios, different ambient temperature, air fuel ratio, turbine inlet temperature, and cycle peak temperature ratio were analyzed. The obtained results are presented and analyzed. Further increasing the cycle peak temperature ratio and total pressure ratio can still improve the performance of the intercooled gas turbine cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.