Electrocardiogram (ECG) and transient evoked otoacoustic emission (TEOAE) are among the physiological signals that have attracted significant interest in biometric community due to their inherent robustness to replay and falsification attacks. However, they are time-dependent signals and this makes them hard to deal with in across-session human recognition scenario where only one session is available for enrollment. This paper presents a novel feature selection method to address this issue. It is based on an auxiliary dataset with multiple sessions where it selects a subset of features that are more persistent across different sessions. It uses local information in terms of sample margins while enforcing an across-session measure. This makes it a perfect fit for aforementioned biometric recognition problem. Comprehensive experiments on ECG and TEOAE variability due to time lapse and body posture are done. Performance of the proposed method is compared against seven state-of-the-art feature selection algorithms as well as another six approaches in the area of ECG and TEOAE biometric recognition. Experimental results demonstrate that the proposed method performs noticeably better than other algorithms.
Face detection in video sequence is becoming popular in surveillance applications. The tradeoff between obtaining discriminative features to achieve accurate detection versus computational overhead of extracting these features, which affects the classification speed, is a persistent problem. This paper proposes to use multiple instances of rotational Local Binary Patterns (LBP) of pixels as features instead of using the histogram bins of the LBP of pixels. The multiple features are selected using the sequential forward selection algorithm we called Co-occurrence of LBP (CoLBP). CoLBP feature extraction is computationally efficient and produces a high-performance rate. CoLBP features are used to implement a frontal face detector applied on a 2D low-resolution surveillance sequence. Experiments show that the CoLBP face features outperform state-of-the-art Haar-like features and various other LBP features extensions. Also, the CoLBP features can tolerate a wide range of illumination and blurring changes.
Feeding a noisy signal to a biometric system degrades its performance. Hence, signal quality measure is used to avoid passing irregular signals to subsequent systems such as biometric systems. To tackle this issue, 1DMRLBP features, which are 1 dimensional signal feature extraction (inspired by the 2 dimensional image Local Binary Patterns) is proposed. 1DMRLBP with its multi-resolution capability captures local and global signal characteristics; and with its histogram extraction avoids segments misalignment and reduces the number of features. Also with some modifications, 1DMRLBP accommodates the problem of unknown amplitude of a signal. 1DMRLBP achieves 91% performance rate in distinguishing between regular and irregular ECG waveforms. MATLAB code and more information are available at www.comm.utoronto.ca/ ∼ wlouis/1DMRLBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.