Previous investigations carried out on reinforced self-compacted concrete (SCC) beams have reported contradictory results on reinforcement bond behaviour occurring in the zones defined for good bond conditions according to Eurocode2. Cantilevered SCC beams’ critical upper tension reinforcement bond behaviour has previously had limited reporting. In this study, the bond behaviour in normally vibrated concrete (NVC) and self-compacted concrete (SCC) in poor conditions zones are compared and the differences are highlighted. The effect of four parameters, including (i) concrete type (SCC and NVC), (ii) characteristic strength of SCC, (iii) lap splice length, and (iv) depth of concrete cover for the reinforcement is investigated. It was found that for the studied beams, increasing splice length improved the energy absorption and changed the failure mode to a more ductile manner even at the poor bond conditions zones. The maximum measured steel strains in SCC beams in the lap splice zones, were higher than those for NVC specimens. The mean bond stress values, for SCC beams with 25–50% lap splice lengths, were higher than those of NVC beams, with the same lap splice lengths, by 16–13%, respectively. The results of the current study showed that the empirical equations from the literature overestimated the bond strength of the splice lap length for cantilever upper steel in SCC beams with long splices which agrees with the state of the art as these equations were developed originally for short anchorage lengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.