Mutations in 11β-hydroxysteroid dehydrogenase type 2 gene () cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of, the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.
Apparent mineralocorticoid excess (AME) is a rare autosomal recessive genetic disorder causing severe hypertension in childhood due to a deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), which is encoded by HSD11B2. Without treatment, chronic hypertension leads to early development of end-organ damage. Approximately 40 causative mutations in HSD11B2 have been identified in ∼100 AME patients worldwide. We have studied the clinical presentation, biochemical parameters, and molecular genetics in six patients from a consanguineous Omani family with AME. DNA sequence analysis of affected members of this family revealed homozygous c.799A>G mutations within exon 4 of HSD11B2, corresponding to a p.T267A mutation of 11βHSD2. The structural change and predicted consequences owing to the p.T267A mutation have been modeled in silico. We conclude that this novel mutation is responsible for AME in this family.
Patients with chronic idiopathic hypoparathyroidism may develop neurological complications, including calcification of the basal ganglia and other areas of the brain. In Fahr's syndrome, intracranial calcification is associated with an underlying disorder such as hypo or hyperparathyroidism. We report the case of a 37-year-old gentleman, with a history of bilateral cataract surgery and seizures, who presented with a new episode of seizure and was found to have severe hypocalcemia and bilateral symmetric intracranial calcification due to previously diagnosed primary hypoparathyroidism. He had symptoms and signs mimicking ankylosing spondylitis (AS), but with negative radiological and serological findings, not fitting into the diagnosis of axial spondyloarthropathies (SpA), as per standard criteria. Patients with longstanding idiopathic hypoparathyroidism can have severe calcification of soft tissues and bones, including vertebrae and paravertebral soft tissues, causing inflammatory back pain and stiffness. It is vital to report such cases as their occurrence is rare, and physicians should be aware of the possibility while evaluating patients with inflammatory back pain. Treatment in these cases is directed towards hypocalcemia and underlying primary pathology rather than spondyloarthropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.