<p>Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.</p>
The main purpose of this paper is to introduce and study new topological properties called C-almost normality and L-almost normality. A space X is called a C-almost normal (resp. L-almost normal) space if there exist an almost normal space Y and a bijective function f : X → Y such that the restriction function f|A : A → f(A) is a homeomorphism for each compact (resp. Lindelöf) subspace A ⊆ X. We investigate these properties and present some examples to illustrate the relationships among them with other kinds of topological properties.
This work studies a new version of normality called epi-quasi normality, which lies between epi-normality and epi-mild normality. In this paper, we investigate this property and present some examples that illustrate the relationships between epi-quasi normality and other kinds of both normality and regularity.
Following the notion of so-called C-normality - a weaker version of normality in topological spaces as proposed by A. V. Arhangel’skii, further weaker version called CC-normality is studied by Kalantan et al [14]. In this paper, we investigate various type of properties such as CC-complete regularity, CC-almost complete regularity, CC-regularity, CC-almost regularity, CCT3 and CC-Tychonoffness. A space (X, T ) is called a CC-completely regular (resp. CC-almost completely regular, CC-regular, CC-almost regular, CCT3, CC-Tychonoff) space if there exist a completely regular (resp. almost completely regular, regular, almost regular, T3, Tychonoff) space Y and a bijective function f : X → Y such that the restriction function f|A : A → f(A) is a homeomorphism for each countably compact subspace A ⊆ X. We study these properties and present some examples to illustrate the relationships among them with other forms of topological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.