Levels of the oxidative stress-related minerals selenium (Se), zinc (Zn) and manganese (Mn) that should be supplied in microdiets for marine fish larvae depend on the availability of the molecular form of these minerals. The objective of this study was to determine how effectively Se, Zn and Mn in organic, inorganic and nanoparticle forms promote larval performance and bone development. Microdiets supplemented with Se, Zn and Mn were fed for 24 days to 20 dah seabream larvae. Microdiets without Se, Zn and Mn supplementation were associated with poor growth, low bone mineralization and a high incidence of anomalies in the branchial arches. Including Zn, Mn and Se in an amino acid chelate organic form promoted maximum larval growth, increased body lipid reserves, enhanced early mineralization and prevented branchial arches anomalies. In contrast, feeding with inorganic forms of these minerals was less effective than organic minerals in improving larval weight or bone mineralization in comparison to the nonsupplemented diet. Moreover, the larvae were less resistant to stress, and fish showed higher bone anomalies in the pre-hemal region. Adding Zn, Mn and Se in the form of nanometals did not enhance growth, but improved stress resistance and bone mineralization. The study showed the need to supplement seabream with early weaning diets based on squid meal and krill oil with one or more of the antioxidant minerals, to promote larval growth, bone mineralization and prevention of skeleton anomalies, organic minerals being more effective than inorganic forms and nanometals in promoting mineralization and stress resistance.
Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.