BackgroundDuring a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it.Methodology/Principal FindingsHerein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva.Conclusions/SignificanceOur data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease.
Nowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes. The neutralization of IL-10 enhanced the activation of a T-cell CD4+ population-producing IFN-γ. Herein, we used a biochemical and functional genomics approach to identify the sand fly salivary components that are responsible for the activation of the T helper type 1 immune response in humans, therefore constituting potential vaccine candidates against leishmaniasis. Fractionated P. papatasi salivary extracts were first tested on T lymphocytes of immune donors. We confirmed that the CD4+ lymphocytes proliferate and produce IFN-γ in response to stimulation with the proteins of molecular weight >30 kDa. Peripheral blood mononuclear cells from immune donors were transfected with plasmids coding for the most abundant proteins from the P. papatasi salivary gland cDNA library. Our result showed that the "yellow related proteins," PPTSP42 and PPTSP44, and "apyrase," PPTSP36, are the proteins responsible for the aforementioned cellular immune response and IFN-γ production. Strikingly, PPTSP44 triggered the highest level of lymphocyte proliferation and IFN-γ production. Multiplex cytokine analysis confirmed the T helper type 1-polarized response induced by these proteins. Importantly, recombinant PPTSP44 validated the results observed with the DNA plasmid, further supporting that PPTSP44 constitutes a promising vaccine candidate against human leishmaniasis.
BackgroundA successful host immune response to infection is dependent upon both innate and adaptive immune effector mechanisms. Cutaneous leishmaniasis results in an adaptive Th1 CD4+ T cell response that efficiently clears the parasite, but may also result in scaring. However the role of innate mechanisms during parasite clearance remains less well defined.MethodsWe examined a unique cohort of individuals, living in a Leishmania major endemic region, that were stratified among 3 distinct clinical groups in a cross-sectional study. Specifically, patients were classified either as healed (n = 17), asymptomatic (23), or naïve to infection (18) based upon the classical Leishmanin Skin Test (LST) and the presence or absence of scars. Utilizing a multiplexed immunoassay approach we characterized the induced cytokine and chemokine response to L. major.ResultsA subset of innate immune molecules was induced in all groups. By contrast, T cell-associated cytokines were largely induced in exposed groups as compared to L. major-infection naïve individuals. Two exceptions were IL-17A and IL-12p70, induced and not induced, respectively, in naïve individuals. In addition, GM-CSF was more strongly induced in healed patients as compared to the other two groups. Surprisingly an IL-13 response was the best cytokine for classifying previously infected donors.ConclusionsExploratory data analysis, utilizing principle component analysis (PCA), revealed distinct patient clusters of the healed and naïve groups based on the most differentially induced proteins. Asymptomatic previously infected individuals were more difficult to assign to a particular cluster based on these induced proteins. Analysis of these proteins may enable the identification of biomarkers associated with disease, leading to a better understanding of the protective mechanisms of immune response against leishmaniasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1458-6) contains supplementary material, which is available to authorized users.
BackgroundSand fly saliva compounds are able to elicit specific immune responses that have a significant role in Leishmania parasite establishment and disease outcome. Characterizing anti-saliva immune responses in individuals living in well defined leishmaniasis endemic areas would provide valuable insights regarding their effect on parasite transmission and establishment in humans.Methodology/Principal findingsWe explored the cellular and humoral immune responses to Phlebotomus (P.) papatasi salivary gland extracts (SGE) in individuals living in cutaneous leishmaniasis (CL) old or emerging foci (OF, EF). OF was characterized by a higher infection prevalence as assessed by higher proportions of leishmanin skin test (LST) positive individuals compared to EF. Subjects were further subdivided into healed, asymptomatic or naïve groups. We showed anti-SGE proliferation in less than 30% of the individuals, regardless of the immune status, in both foci. IFN-γ production was higher in OF and only observed in immune individuals from OF and naïve subjects from EF. Although IL-10 was not detected, addition of anti-human IL-10 antibodies revealed an increase in proliferation and IFN-γ production only in individuals from OF. The percentage of seropositive individuals was similar in immune and naïves groups but was significantly higher in OF. No correlation was observed between anti-saliva immune responses and LST response. High anti-SGE-IgG responses were associated with an increased risk of developing ZCL. No differences were observed for anti-SGE humoral or cellular responses among naïve individuals who converted or not their LST response or developed or not ZCL after the transmission season.Conclusions/SignificanceThese data suggest that individuals living in an old focus characterized by a frequent exposure to sand fly bites and a high prevalence of infection, develop higher anti-saliva IgG responses and IFN-γ levels and a skew towards a Th2-type cellular response, probably in favor of parasite establishment, compared to those living in an emerging focus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.