Microsatellites have currently become the markers of choice for molecular mapping and marker-assisted selection for key traits such as disease resistance in many crop species. We report here on the mapping of microsatellites which had been identified from a genomic library of lentil (Lens culinaris Medik.). The majority of microsatellite-bearing clones contained imperfect di-nucleotide repeats. A total of 41 microsatellite and 45 amplified fragment length polymorphism (AFLP) markers were mapped on 86 recombinant inbred lines derived from the cross ILL 5588 x L 692-16-1(s), which had been previously used for the construction of a random amplified polymorphic DNA and AFLP linkage map. Since ILL 5588 was resistant to fusarium vascular wilt caused by the fungus Fusarium oxysporum Shlecht. Emend. Snyder & Hansen f.sp. lentis Vasud. & Srini., the recombinant inbreds were segregating for this character. The resulting map contained 283 markers covering about 751 cM, with an average marker distance of 2.6 cM. The fusarium vascular wilt resistance was localized on linkage group 6, and this resistance gene was flanked by microsatellite marker SSR59-2B and AFLP marker p17m30710 at distances of 8.0 cM and 3.5 cM, respectively. These markers are the most closely linked ones known to date for this agronomically important Fw gene. Using the information obtained in this investigation, the development and mapping of microsatellite markers in the existing map of lentil could be substantially increased, thereby providing the possibility for the future localization of various loci of agronomic interest.
Two small-insert genomic libraries of chickpea (Cicer arietinum L.) were screened with a set of microsatellite-specific oligonucleotide probes. A total of 121 positive clones were identified among 13,000 plated colonies. Thirty-nine clones were recognized by (TAA)5, 26 by (GA)8, 18 by (GT)8, 27 by a pool of AT-rich trinucleotide repeats [(CAA)5, (CAT)5, and (GAA)5], and 11 by a pool of GC-rich trinucleotides [(TCC)5, (CAC)5, (CAG)5, and (CGA)5]. Of 53 clones selected for sequencing, 43 carried a microsatellite. Flanking primer pairs were designed for 28 loci, and used on a small test-set comprising one C. reticulatum and four C. arietinum accessions. Separation of the PCR products on agarose or polyacrylamide gels revealed single bands of the expected size with 22 of the primer pairs. Sixteen of these "Cicer arietinum sequence-tagged microsatellite site" (CaSTMS) markers were polymorphic at an intraspecific level, detecting 2-4 alleles within the four accessions examined. Primer pairs CaSTMS10 and CaSTMS15 revealed 25 and 16 alleles among 63 C. arietinum accessions from different geographic locations, reflecting gene diversity values of 0.937 and 0.922, respectively. Mendelian inheritance of CaSTMS markers was demonstrated using a set of recombinant inbred lines and their parents.
Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT1) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a predefined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.