This study is interested in the removal of Pb(II), Cd(II), Co(II), Zn(II), and Sr(II) onto polyacrylic acid acrylonitrile talc P(AA-AN)-talc nanocomposite. P(AA-AN)-talc was fabricated using γ-irradiation-initiated polymerization at 50 kGy. Different analytical tools were used to investigate the functional groups, morphology, particle size, and structure of this composite. The ability of P(AA-AN)-talc to capture (Pb2+, Cd2+, Co2+, Zn2+, and Sr2+) as multi-component aqueous solutions was performed by a batch method. Saturation capacity and the effect of (agitating time, pH, initial metal concentrations, and temperature) were investigated. The distribution coefficients at different pHs have order: Pb2+ > Cd2+ > Co2+ > Zn2+ > Sr2+. The saturation capacity decreases by increasing heating temperatures. Reaction kinetic obeys the pseudo-second-order model. Sorption isotherms are more relevant to a Langmuir isotherm, and the monolayer sorption capacity is closed to saturation capacity. Thermodynamic parameters (∆G˚, ∆H˚, and ∆S˚) were endothermic and spontaneous. P(AA-AN)-talc is used for loading and recovery of studied cations in the column system. The study confirms that P(AA-AN)-talc is a promised composite for the sorption of the studied ions from aqueous solutions and should be considered as potential material for decontaminating these ions.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.