An important feature necessary for biological stability of gold nanoparticles is resistance to ligand exchange. Here, we design and synthesize self-assembled monolayers of mixtures of small ligands on gold nanoparticles promoting high resistance to ligand exchange. We use as ligands short thiolated peptidols, e.g. H-CVVVT-ol, and ethylene glycol terminated alkane thiols (HS-C 11 -EG 4 ). We present a straightforward method to evaluate the relative stability of each ligand shell against ligand exchange with small thiolated molecules. The results show that a ligand with a 'thin' stem, such as HS-C 11 -EG 4 , is an important feature to build a highly packed self-assembled monolayer and provide high resistance to ligand exchange. The greatest resistance to ligand exchange was found for the mixed ligand shells of the pentapeptidols H-CAVLT-ol or H-CAVYT-ol and the ligand HS-C 11 -EG 4 at 30:70 (mole/mole). Mixtures of ligands of very different diameters, such as the peptidol H-CFFFY-ol and the ligand HS-C 11 -EG 4 , provide only a slightly lower stability against ligand exchange. These ligand shells are thus likely to be suitable for long-term use in biological environments. The method developed here provides a rapid screening tool to identify nanoparticles likely to be suitable for use in biological and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.