A workshop was held in Casablanca, Morocco, in March 2012, to enhance knowledge of climate extremes and their changes in the Arab region. This workshop initiated intensive data compilation activities of daily observational weather station data from the Arab region. After conducting careful control processes to ensure the quality and homogeneity of the data, climate indices for extreme temperatures and precipitation were calculated. This study examines the temporal changes in climate extremes in the Arab region with regard to long-term trends and natural variability related to ENSO and NAO. We find consistent warming trends since the middle of the 20th Century across the region. This is evident in the increased frequencies of warm days and warm nights, higher extreme temperature values, fewer cold days and cold nights and shorter cold spell durations. The warming trends seem to be particularly strong since the early 1970s. Changes in precipitation are generally less consistent and characterised by a higher spatial and temporal variability; the trends are generally less significant. However, in the western part of the Arab region, there is a tendency towards wetter conditions. In contrast, in the eastern part, there are more drying trends, although, these are of low significance. We also find some relationships between climate extremes in the Arab region and certain prominent modes of variability, in particular El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). The relationships of the climate extremes with NAO are stronger, in general, than those with ENSO, and are particularly strong in the western part of the Arab region (closer to the Atlantic Ocean). The relationships with ENSO are found to be more significant towards the eastern part of the area of study.
In this study, we evaluate trends in precipitation and temperature and their related extreme indices in Morocco based on a set of National Climate Monitoring Products defined the by the commission for climatology of the WMO. We use daily precipitation, maximum and minimum temperature data from 30 meteorological stations distributed throughout the country and covering the period from 1960 to 2016. Statistically significant increasing trends in warm temperature events and a tendency towards decreasing cold extremes at both daytime and night are depicted across the country consistent with the generalized observed global warming. We found that the daily temperature in Morocco has risen with higher rates than the global scale. The depicted trend of 0.33 C per decade corresponds to a warming of approximately 1.1 C for the period 1984-2016. The annual mean precipitation and the standardized drought index show less spatially consistent tendencies despite the predominance of negative trends. Considering the effect of the warming in the analysis of drought evolution using the Standardized Precipitation-Evapotranspiration Index, we detected statistically significant trends towards dryer conditions in different regions of the northern half of the country. Analysis of the relationship between precipitation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.