The chemistry and topography of a surface affect biological response and are of fundamental importance, especially when living systems encounter synthetic surfaces. Most biomolecules have immense recognition power (specific binding) and simultaneously have a tendency to physically adsorb onto a solid substrate without specific receptor recognition (nonspecific adsorption). Therefore, to create useful materials for many biotechnology applications, interfaces are required that have both enhanced specific binding and reduced nonspecific binding. Thus, in applications such as sensors, the tailoring of surface chemistry and the use of micro or nanofabrication techniques becomes an important avenue for the production of surfaces with specific binding properties and minimal background interference. Both self-assembled monolayers (SAMs) and polymer brushes have attracted considerable attention as surface-active materials. In this review, we discuss both of these materials with their potential applications in biotechnology. We also summarize lithographic methods for pattern formation using combined top-down and bottom-up approaches and briefly discuss the future of these materials by describing emerging new applications.
We report on the fabrication of nanometer-scale mass sensors with subattogram sensitivity. Surface micromachined polycrystalline silicon and silicon nitride nanomechanical oscillators were used to detect the presence of well-defined mass loading. Controlled deposition of thiolate self-assembled monolayers on lithographically defined gold dots were used for calibrated mass loading. We used a dinitrophenyl poly(ethylene glycol) undecanthiol-based molecule (DNP-PEG4-C11thiol) as a model ligand for this study. Due to the fact that the gold mass is attached at the distance l0 from the end x=l of the cantilever beam, an additional moment evolves in the boundary condition of the oscillator, which was taken into consideration through the rotational inertia of the attached mass. We showed that the corresponding correction of the frequency is on the order of γ(l0/l), where γ is the attached mass normalized to the mass of the beam. The rotational inertia correction to the frequency is on the order of γ(l0/l)2. The adopted approach permits accurate determination of the eigenfrequency in the framework of the Euler–Bernoulli beam when rotational inertia of the attached mass is included. From the resonant frequency shift, the mass of the adsorbed species was determined and compared to results obtained by other techniques. Utilizing vacuum encapsulation, we demonstrate sensing capability in the attogram regime of the adsorbed self-assembled monolayer.
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.
The effect of surface topography and chemistry on cellular response is of fundamental importance, especially where living systems encounter device surfaces as in medical implants, tissue engineering, and cell-based sensors. To understand these biological processes on surfaces, there is a widespread interest in tailored surface-active materials produced by a combination of surface chemistry coupled to advanced patterning processes. We utilize self-assembled monolayers (SAMs) as molecular templates with submicrometer-scale spatial resolution to engage and cluster IgE receptors on rat basophilic leukemia (RBL) mast cells. Bioactive templates consisted of gold arrays on silicon with patterns from 1 mum down to 45 nm. These gold arrays served as molecular tethering sites, enabling covalent binding of functionalized self-assembled monolayers of alkanethiols. The free ends of the monolayers were functionalized with 2,4-dinitrophenyl(DNP)-caproate-based ligands which interact specifically with anti-DNP IgE bound to its high affinity cell surface receptor, FcepsilonRI on RBL mast cells. Present results on structures 1 mum down to 600 nm in size indicate that these ligand-immobilized patterned arrays can function as a powerful tool for visualization and systematic characterization of cell membrane involvement in IgE receptor-mediated immune cell signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.