Important operational changes that have gradually been assimilated and new approaches that are developing as part of the movement toward sustainable intensive aquaculture production systems are presented via historical, current, and future perspectives. Improved environmental and economic sustainability based on increased efficiency of production continues to be realized. As a result, aquaculture continues to reduce its carbon footprint through reduced greenhouse gas emissions. Reduced use of freshwater and land resources per unit of production, improved feed management practices as well as increased knowledge of nutrient requirements, effective feed ingredients and additives, domestication of species, and new farming practices are now being applied or evaluated. Successful expansion into culture of marine species, both off and on shore, offers the potential of substantial increases in sustainable intensive aquaculture production combined with integrative efforts to increase efficiency will principally contribute to satisfying the increasing global demand for protein and food security needs.
Based on recent surveys of the freshwater decapod fauna, distributional data of five exotic species of freshwater decapod crustaceans for the hydrographic basins of the state of Sa˜o Paulo are presented, as part of a large initiative for a comprehensive survey of the state's biodiversity (BIOTA-FAPESP Program). These species are the North American crayfish Procambarus clarkii (Girard) (Cambaridae), the crab Dilocarcinus pagei Stimpson (Trichodactylidae) from the Amazon and Paraguay/lower Parana´River Basins, and the palaemonid shrimps Macrobrachium rosenbergii (De Man), from the Indo-Pacific region, Macrobrachium amazonicum (Heller) and Macrobrachium jelskii (Miers), both from the Orinoco, Amazon and the Paraguay/lower ParanaŔ iver Basins. Possible modes by which their introduction might have occurred are commented upon and potential consequences are discussed.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (P = 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L−1). Lighter coloured tanks and excess luminosity (more than 2 μmol s−1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.