Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4+ (CD4+) T lymphocytes and CD8+ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production.
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia, generalized edema, and hyperlipidemia. It begins by changes in the glomerular filtration barrier, with increased permeability to plasma proteins. It affects all age groups and can progress to end-stage renal disease. NS pathophysiology is still unknown. However, the critical role of the immune system is well recognized. Animal models are useful tools for the investigation of NS. Among different experimental models proposed in the literature, disease induced by Doxorubicin has been considered helpful to the purpose of many studies. The aim of this review article is to describe the animal model of NS induced by the injection of Doxorubicin in rodents, with emphasis on action of the drug, potential mechanisms of renal injury, as well biochemical, histological, and corporal changes obtained with this model.
Idiopathic nephrotic syndrome (INS) is a multifactorial disease, characterized by proteinuria, hypoalbuminemia, edema and hyperlipidemia. Studies in humans and animal models have associated INS with changes in the immune response. The purpose of this article is to review clinical and experimental findings showing the involvement of the immune response in the pathogenesis of INS. The role of the immune system in INS has been shown by clinical and experimental studies. However, the pattern of immune response in patients with INS is still not clearly defined. Many studies show changes in the dynamics of T lymphocytes, especially the regulatory T cells. Alternatively, there are other reports regarding the involvement of the complement system and B lymphocytes in the pathophysiology of INS. Indeed, none of the immunological biomarkers evaluated were undeniably linked to changes in glomerular permeability and proteinuria. On the other hand, some studies suggest a link between urinary chemokines, such as IL-8/CXCL8 and MCP-1/CCL2, and changes in glomerular permeability and/or the deterioration of glomerulopathies. To understand the pathophysiology of INS, longitudinal studies are clearly needed. The characterization of the profile of the immune response might help the development of specific and individualized therapies, leading to clinical improvement and better prognosis.
Regardless the level of proteinuria, INS patients had increased expression of TNF-α in CD4-lymphocytes and reduced expression of IFN-γ in CD8-lymphocytes. Persistence of proteinuria was associated with higher levels of inflammatory markers.
Background and Aim: Idiopathic nephrotic syndrome (INS) is classified according to the response to drug therapy in steroid-sensitive (SS), steroid-dependent (SD), and steroid-resistant (SR) categories. Previous studies showed changes in inflammatory activity of subpopulations of lymphocytes in INS. This study aimed to compare SS and SR patients in regard to subpopulations of leukocytes, profile of regulatory lymphocytes, and migratory activity of lymphocyte subpopulations. Results obtained in INS patients were also compared to age and sex-matched healthy controls. Methods: This is a cross-sectional study including SS patients ( n = 30), SR patients ( n = 14), and controls ( n = 10). Peripheral blood samples were withdrawn for ex-vivo leukocyte flow cytometry analysis. Results: Percentage of B-lymphocytes and natural killer (NK) cells were significantly reduced in SR patients when compared to controls, while the percentage of NKT cells were decreased in SS patients in comparison to controls. Percentages of CD4 + expressing FoxP3 and CTLA4 were significantly higher in SS patients in comparison to SR patients and controls. The expression of integrin CD18 on the surface of T lymphocytes (CD3 + ) was reduced in SS patients if compared to controls. Conclusion: This study found that SS INS patients have higher levels of regulatory T-lymphocytes and lower expression of adhesion molecules than SR patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.