A rabbit eye model of neural ischaemia is described that uses an increased pressure in the anterior eye chamber to block the capillary supply to the retina. A microdialysis probe placed very close to the retinal surface was used to monitor release of amino acids during ischaemia. A large (two- to threefold) increase in the release of glutamate and O-phosphoserine (twofold), but not of six other amino acids monitored, occurred during initial ischaemia. During reperfusion after release of intraocular pressure, much larger (five- to 10-fold) increases in the release of these amino acids were observed. Parallel ischaemic retinal tissue damage was observed. This damage was prevented by ketamine applied locally via a superfusion needle, suggesting that glutamate released during ischaemia, and particularly during reperfusion, was responsible for cell death.
1 In this study, we examined the effects of crude venom from the spider Parawixia bistriata on glutamate and GABA uptake into synaptosomes prepared from rat cerebral cortex. Addition of venom to cortical synaptosomes stimulated glutamate uptake and inhibited GABA uptake in a concentration-dependent manner. 2 The venom was fractionated using reverse-phase high-performance liquid chromatography on a preparative column. The fraction that retained glutamate uptake-stimulating activity was further purified on a reverse-phase analytical column followed by ion-exchange chromatography. 3 The active fraction, referred to as PbTx1.2.3, stimulated glutamate uptake in synaptosomes without changing the K M value, and did not affect GABA uptake. Additional experiments showed that the enhancement of glutamate uptake by PbTx1.2.3 occurs when ionotropic glutamate receptors or voltage-gated sodium and calcium channels are completely inhibited or when GABA receptors and potassium channels are activated, indicating that the compound may have a direct action on the transporters. 4 In an experimental model for glaucoma in which rat retinas are subjected to ischemia followed by reperfusion, PbTx1.2.3 protected neurons from excitotoxic death in both outer and inner nuclear layers, and ganglion cell layers. 5 This active spider venom component may serve as a basis for designing therapeutic drugs that increase glutamate clearance and limit neurodegeneration.
Previous studies have shown that a compound purified from the spider Parawixia bistriata venom stimulates the activity of glial glutamate transporters and can protect retinal tissue from ischemic damage. To understand the mechanism by which this compound enhances transport, we examined its effects on the functional properties of glutamate transporters after solubilization and reconstitution in liposomes and in transfected COS-7 cells. Here, we demonstrate in both systems that Parawixin1 promotes a direct and selective enhancement of glutamate influx by the EAAT2 transporter subtype through a mechanism that does not alter the apparent affinities for the cosubstrates glutamate or sodium. In liposomes, we observed maximal enhancement by Parawixin1 when extracellular sodium and intracellular potassium concentrations are within physiological ranges. Moreover, the compound does not enhance the reverse transport of glutamate under ionic conditions that favor efflux, when extracellular potassium is elevated and the sodium gradient is reduced, nor does it alter the exchange of glutamate in the absence of internal potassium. These observations suggest that Parawixin1 facilitates the reorientation of the potassiumbound transporter, the rate-limiting step in the transport cycle, a conclusion further supported by experiments showing that Parawixin1 does not stimulate uptake by an EAAT2 transport mutant (E405D) defective in the potassium-dependent reorientation step. Thus, Parawixin1 enhances transport through a novel mechanism targeting a step in the transport cycle distinct from substrate influx or efflux and provides a basis for the design of new drugs that act allosterically on transporters to increase glutamate clearance.
The major contribution of this work is the isolation of a neuroprotective compound referred to as 2-amino-5-ureidopentanamide (FrPbAII) (M r ϭ 174) from Parawixia bistriata spider venom and an investigation of its mode of action. FrPbAII inhibits synaptosomal GABA uptake in a dose-dependent manner and probably does not act on Na ϩ , K ϩ , and Ca 2ϩ channels, GABA B receptors, or ␥-aminobutyrate:␣-ketoglutarate aminotransferase enzyme; therefore, it is not directly dependent on these structures for its action. Direct increase of GABA release and reverse transport are also ruled out as mechanisms of FrPbAII activities as well as unspecific actions on pore membrane formation. Moreover, FrPbAII is selective for GABA and glycine transporters, having slight or no effect on monoamines or glutamate transporters. According to our experimental glaucoma data in rat retina, FrPbAII is able to cross the blood-retina barrier and promote effective protection of retinal layers submitted to ischemic conditions. These studies are of relevance by providing a better understanding of neurochemical mechanisms involved in brain function and for possible development of new neuropharmacological and therapeutic tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.