A number of issues have remained unanswered in the design of "thorough QT"(TQT) studies. In this randomized, placebo-controlled, two-period crossover study in 20 healthy subjects, replicate electrocardiograms (ECGs) were recorded on a digital 12-lead Holter recorder, extracted in a core ECG laboratory, and interpreted manually by a cardiologist. The observed within-subject variability was slightly greater when time-matched baselines were employed than when predose baselines were employed, whereas the magnitude of the increase in QTc was similar for both. Moxifloxacin 400 mg was associated with an observed 7.5-12.5 ms increase in the mean placebo- and baseline-corrected QTc interval. A PK-QTc model estimated a 3.9 ms increase in the QTc interval for every 1,000 ng/ml increase in moxifloxacin concentration. The QTc increases associated with moxifloxacin support the appropriateness of its use as a positive control in TQT studies. This crossover study failed to justify the use of time-matched baselines rather than the less resource-intensive predose definition of baseline.
We studied the time course for the reversal of rifampin's effect on the pharmacokinetics of oral midazolam (a cytochrome P450 (CYP) 3A4 substrate) and digoxin (a P-glycoprotein (P-gp) substrate). Rifampin increased midazolam metabolism, greatly reducing the area under the concentration-time curve (AUC(0-∞)). The midazolam AUC(0-∞) returned to baseline with a half-life of ~8 days. Rifampin's effect on the AUC(0-3 h) of digoxin was biphasic: the AUC(0-3 h) increased with concomitant dosing of the two drugs but decreased when digoxin was administered after rifampin. Digoxin was found to be a weak substrate of organic anion-transporting polypeptide (OATP) 1B3 in transfected cells. Although the drug was transported into isolated hepatocytes, it is not likely that this transport was through OATP1B3 because the transport was not inhibited by rifampin. However, rifampin did inhibit the P-gp-mediated transport of digoxin with a half-maximal inhibitory concentration (IC(50)) below anticipated gut lumen concentrations, suggesting that rifampin inhibits digoxin efflux from the enterocyte to the intestinal lumen. Pharmacokinetic modeling suggested that the effects on digoxin are consistent with a combination of inhibitory and inductive effects on gut P-gp. These results suggest modifications to drug-drug interaction (DDI) trial designs.
Raltegravir is a novel human immunodeficiency virus-1 integrase inhibitor with potent in vitro activity (95% inhibitory concentration (IC95)=33 nM in 50% human serum). Three double-blind, randomized, placebo-controlled, pharmacokinetic, safety, and tolerability studies were conducted: (1) single-dose escalation study (10-1,600 mg), (2) multiple-dose escalation study (100-800 mg q12 h x 10 days), and (3) single-dose female study (400 mg). Raltegravir was rapidly absorbed with a terminal half-life (t1/2) approximately 7-12 h. Approximately 7-14% of raltegravir was excreted unchanged in urine. Area under the curve (AUC)(0-infinity) was similar between male and female subjects. After multiple-dose administration, steady state was achieved within 2 days; there was little to modest accumulation of raltegravir. Trough levels were >33 nM for dose levels of 100 mg and greater. Raltegravir is generally well tolerated at doses of up to 1,600 mg/day given for up to 10 days and exhibits a pharmacokinetic profile supportive of twice-daily dosing with multiple doses of 100 mg and greater achieving trough levels >33 nM.
A consistent framework for the acceptance and qualification of biomarkers for regulatory use is needed to facilitate innovative and efficient research and subsequent application of biomarkers in drug development. One key activity is biomarker qualification, a graded, "fit-for-purpose" evidentiary process linking a biomarker with biology and clinical end points. A biomarker consortium model will distribute cost and risk, and drive efficient execution of research and ultimately regulatory acceptance of biomarkers for specific indications.
Inhibition of cathepsin K (CatK) is a potential new treatment for osteoporosis. In two double-blind, randomized, placebo-controlled phase I studies, postmenopausal female subjects received odanacatib (ODN), an orally active, potent, and selective CatK inhibitor, once weekly for 3 weeks or once daily for 21 days. Bone turnover biomarkers, safety monitoring, and plasma ODN concentrations were assessed. These studies showed ODN to be well tolerated. Pharmacokinetic (PK) analysis revealed a long half-life (t(1/2); 66-93 h) consistent with once-weekly dosing. Pronounced reductions in C-terminal telopeptide of type I collagen (approximately 62%) and N-terminal telopeptide of type I collagen normalized to creatinine (NTx/Cr) (approximately 62%) at trough (C(168 h)) were seen following weekly administration. Robust reductions in CTx (up to 81%) and NTx/Cr (up to 81%) were seen following daily administration. ODN exhibits robust and sustained suppression of bone resorption biomarkers (CTx and NTx/Cr) at weekly doses > or = 25 mg and daily doses > or = 2.5 mg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.