We consider the one-dimensional quantum mechanical problem of defining interactions concentrated at a single point in the framework of the theory of distributions. The often ill-defined product which describes the interaction term in the Schrödinger and Dirac equations is replaced by a well-defined distribution satisfying some simple mathematical conditions and, in addition, the physical requirement of probability current conservation is imposed. A four-parameter family of interactions thus emerges as the most general point interaction both in the non-relativistic and in the relativistic theories (in agreement with results obtained by self-adjoint extensions). Since the interaction is given explicitly, the distributional method allows one to carry out symmetry investigations in a simple way, and it proves to be useful to clarify some ambiguities related to the so-called δ interaction.
We consider the one-dimensional Hydrogen atom, with the Coulomb interaction V(x) = γ |x| (γ < 0), and use Schwartz's theory of distributions to address the non-integrable singularity at the origin. This singularity renders the interaction term V(x)ψ(x) in the Schrödinger's equation, where ψ(x) is the wave function, an ill-defined product in the ordinary sense. We replace this ill-defined product by a well-defined interaction distribution, S[ψ, V](x), and by imposing that it should satisfy some fundamental mathematical and physical requirements, we show that this distribution is defined up to a 4-parameter family of contact interactions, in agreement with the method of self-adjoint extensions. By requiring that the interaction distribution be invariant under parity, we further restrict the 4-parameter family of interactions to the subfamily of all the parity invariant Coulomb interactions. Finally, we present a systematic study of the bound states within this subfamily, addressing the frequently debated issues of the multiplicity and parity of the bound states, and the boundedness of the ground state energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.