No abstract
We investigated the potential use of synthetic data for automatic license plate detection and recognition by detecting and clustering each of the characters on the license plates. We used 36 cascading classifiers (26 letters + 10 numbers) as an individual character to detect synthetically generated license plates. We trained our cascade classifier using a Local Binary Pattern (LBP) as the visual descriptor. After detecting all the characters individually, an investigation has been established in identifying and utilizing a clustering algorithm in grouping these characters for valid license plate recognition. Two clustering algorithms have been considered including Hierarchical and K-means. Investigation results revealed that the hierarchical clustering algorithm approach produces better results in clustering the detecting characters than the K-means. Inaccuracy in the actual detection and recognition of license plates is largely attributed to the false detections in some of the 36 classifiers used in the study. To improve the precision in the detection of plate numbers, it is recommended to have a good classifier for each character detection and utilization of a good clustering algorithm. The proponents concluded that detecting and clustering each character was not an effective approach, however the use of synthetic data in training the classifiers shows promising results. Keywords: Cascading Classifiers, Synthetic Data, Local Binary Pattern, License Plate Recognition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.