The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.
Using simultaneous high spatial (1.3 arcsec) and temporal (5 and 10 s) resolution Hα observations from the 15 cm Solar Tower Telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), we study the oscillations in the relative intensity to explore the possibility of sausage oscillations in the chromospheric cool post‐flare loop. We use the standard wavelet tool, and find the oscillation period of ≈587 s near the loop apex, and ≈349 s near the footpoint. We suggest that the oscillations represent the fundamental and the first harmonics of the fast‐sausage waves in the cool post‐flare loop. Based on the period ratio P1/P2∼1.68, we estimate the density scaleheight in the loop as ∼17 Mm. This value is much higher than the equilibrium scaleheight corresponding to Hα temperature, which probably indicates that the cool post‐flare loop is not in hydrostatic equilibrium. Seismologically estimated Alfvén speed outside the loop is ∼300–330 km s−1. The observation of multiple oscillations may play a crucial role in understanding the dynamics of lower solar atmosphere, complementing such oscillations already reported in the upper solar atmosphere (e.g. hot flaring loops).
Abstract.A major two-ribbon X17 flare occurred on 28 October 2003, starting at 11:01 UT in active region NOAA 10486. This flare was accompanied by the eruption of a filament and by one of the fastest halo coronal mass ejections registered during the October -November 2003 strong activity period. We focus on the analysis of magnetic field (SOHO/MDI), chromospheric (NainiTal observatory and TRACE), and coronal (TRACE) data obtained before and during the 28 October event. By combining our data analysis with a model of the coronal magnetic field, we concentrate on the study of two events starting before the main flare. One of these events, evident in TRACE images around one hour prior to the main flare, involves a localized magnetic reconnection process associated with the presence of a coronal magnetic null point. This event extends as long as the major flare and we conclude that it is independent from it. A second event, visible in Hα and TRACE images, simultaneous with the previous one, involves a large-scale quadrupolar reconnection process that contributes to decrease the magnetic field tension in the overlaying field configuration; this allows the filament to erupt in a way similar to that proposed by the breakout model, but with magnetic reconnection occurring at Quasi-Separatrix Layers (QSLs) rather than at a magnetic null point.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25 -40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110 • within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.