Electrochemical advanced oxidation processes are the most promising methods for destroying and degrading organic and inorganic pollutants present in produced water effluents. This study presents the electro-oxidation process using graphite electrodes and electro-Fenton process using iron electrodes for the treatment of real produced water. The effect of operating parameters such as current density on chemical oxygen demand (COD) removal efficiency was addressed. The result showed that electro-Fenton process was more efficient than electro-oxidation process where it gave 98% as maximum COD removal efficiency with energy consumption of 1.9 kWh/dm 3 at H 2 O 2 concentration of 12 mM, current density of 10 mA/cm 2 , temperature of 25 C, pH of 3, and treatment time of 80 min compared with 96.9% as maximum COD removal efficiency with energy consumption of 3 kWh/dm 3 at pH of 6, current density of 10 mA/cm 2 , temperature of 40 C, and reaction time of 80 min when using electro-oxidation process. These results demonstrated that electrochemical technologies are very promising methods for the treatment of produced water from oil/gas industry, so it can be safely disposed of or effectively reused for injection and irrigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.