The gold nanostructures find several technological applications in MEMS, optoelectronics, and electronics industries. To enhance the applicability and suitability of the gold nanostructures in these fields, modification of the morphology of the deposited nanostructure is required. In recent years, the electrodeposition method has emerged as a widely known method for the deposition of the nanostructures of different dimensions and morphologies due to its time efficiency, costeffectiveness, and absence of vacuum technology. In this method, the morphology of the deposited gold nanostructure can also be easily controlled by tuning the electrodeposition process parameters such as electrolyte concentration, electrolyte temperature, current density, deposition time, etc. This chapter gives a detailed overview of the crucial electrodeposition parameters affecting the morphology of the gold nanostructures deposits.
The Ag-Ni films have attracted the attention of material scientists and researchers due to its applications as magnetic materials, catalyst, optical materials, etc. In the bulk, the formation of a single-phase solid solution of the Ag-Ni alloy film is difficult due to the large differences in the atomic size and the positive enthalpy of mixing. However, the immiscibility in the Ag and Ni constituents is diminished in the nanosized level. The electrodeposition method has established itself as a most suitable method for synthesis of single-phase Ag-Ni alloy films due to its time efficiency, cost-effectiveness, and ability to mass production of single-phase solid solutions. In this method, the miscibility of alloying elements (i.e., Ag and Ni) and the quality of the Ag-Ni film can also be easily controlled by tuning the electrodeposition process parameters such as the magnitude of the applied current density, temperature of the electrolyte, additives in electrolytes, etc. This chapter presents a detailed overview of the process parameters affecting the miscibility, morphology, and the quality of the single solid solution of Ag-Ni film. Furthermore, the nucleation and growth mechanism of Ag-Ni film and the effect of the curvature of the deposited film's particles in the miscibility of the Ag and Ni elements have also been discussed in detailed.
An Ultrafine grain (UFG) microstructure is developed on the sheet of Al-2.4wt%Cu-0.3wt%Si alloy after three passes of accumulative roll bonding (ARB) process. The detailed of the microstructural features and phases at different strain condition has been studied by transmission electron microscopy (TEM). Observation indicates at the possibility of dynamic recovery and recrystallisation during the ARB processing itself. The material becomes ultrafine grains after three passes of ARB itself with the formation of dynamically recrystallised grains all over the sample. TEM evidence is presented in support of this proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.