End-to-end encryption is the protocol most widely used today. End-to-end encryption protocols are used in communication applications such as instant messaging. The end-to-end encryption protocol guarantees that messages or data can only be read by the sender and receiver only. End-to-end encryption protocols ues symmetric and asymmetric algorithms, asymmetric algorithm is used as a key exchange process and digital signatures and symmetric algorithm is use for message encryption. Many end-to-end encryption protocols that are developed are also many different asymmetric cryptographic algorithms that are used. In the end-to-end encryption protocol developed by the Open Whisper System the cryptographic algorithm used is the Curve25519 algorithm, in OpenPGP using the RSA Cryptographic Algorithm, and in S / MIME using the El Gamal Cryptographic Algorithm. Based on these differences the researchers propose a study to measure the performance of asymmetric cryptographic algorithms used by several protocols developed. Performance measurement uses the time module in Python and Valgrind applications. The time module is used to measure time performance and Valgrind is used to measure the level of memory requirements. After testing, a conclusion will be drawn to determine the fastest and most efficient algorithm for solving key exchange problems in data communication.
Water quality is an essential part of shrimp farming. Data integrity is one of the challenges in building a water conductivity monitoring system. Data read by the sensor should represent the physical conditions that occur. However, some factors can cause abnormal data changes. This abnormal data change can occur due to sensor damage or an attempt to sabotage the pool. In this study, a data anomaly detection algorithm was built using the Kalman filter and standard deviation to solve the problem of determining the normal range of data. The designed algorithm was then tested and evaluated using Arduino nano, Arduino mega, and Wemos D1 Microcontrollers to determine the algorithm's performance on limited computing devices. Based on the data analysis that has been carried out, it is found that the anomaly detection algorithm based on the Kalman filter has an accuracy of 92.5% and can detect anomaly data that occurs with TPF = 1 and FNR = 0 values. The implementation of the detection algorithm on the microcontroller shows that WEMOS D1 (ESP8266) has an excellent average computational speed of 27.99 us. As for the stability of the Arduino Nano (ATMEGA328) and Arduino Mega 2560 (ATMEGA 2560) microcontrollers, the computation time deviation is about 2.8 us. Kualitas air merupakan bagian penting pada budidaya udang. Salah satu tantangan dalam membangun sebuah sistem monitoring konduktivitas air adalah Keutuhan data. Suatu data yang terbaca oleh sensor seharusnya mewakili kondisi fisik yang terjadi. Akan tetapi ada faktor-faktor dapat menyebabkan perubahan data yang tidak wajar. Perubahan data yang tidak wajar ini dapat terjadi karena disebabkan kerusakan sensor maupun adanya upaya sabotase pada kolam. Pada penelitian ini dibangun sebuah algoritma deteksi anomali data menggunakan Kalman filter dan standar deviasi untuk mengatasi masalah penentuan rentang data normal. Algoritma yang dirancang kemudian diuji dan dievaluasi dengan menggunakan Mikrokontroller Arduino nano, Arduino mega dan Wemos D1 untuk mengetahui performa algoritma yang dirancang pada perangkat komputasi terbatas. Berdasarkan analisis data yang telah dilakukan didapatkan hasil bahwa algoritma deteksi anomali berbasis kalman filter memiliki akurasi 92,5% dan dapat mendeteksi data anomali yang terjadi dengan nilai TPF =1 dan FNR=0. Implementasi algoritma deteksi pada mikrokontroller menunjukkan bahwa WEMOS D1 (ESP8266) memiliki rata-rata kecepatan komputasi yang baik yaitu 27,99 us. Sedangkan untuk kestabilan mikrokontroller Arduino Nano (ATMEGA328) dan Arduino Mega 2560 (ATMEGA 2560) memiliki deviasi waktu komputasi sekitar 2,8 us.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.