Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease—a leading cause of infant mortality.
BackgroundAn environmental health inequality is a major public health concern in Europe. However just few studies take into account a large set of characteristics to analyze this problematic. The aim of this study was to identify and describe how socioeconomic, health accessibility and exposure factors accumulate and interact in small areas in a French urban context, to assess environmental health inequalities related to infant and neonatal mortality.MethodsEnvironmental indicators on deprivation index, proximity to high-traffic roads, green space, and healthcare accessibility were created using the Geographical Information System. Cases were collected from death certificates in the city hall of each municipality in the Nice metropolitan area. Using the parental addresses, cases were geocoded to their census block of residence. A classification using a Multiple Component Analysis following by a Hierarchical Clustering allow us to characterize the census blocks in terms of level of socioeconomic, environmental and accessibility to healthcare, which are very diverse definition by nature. Relation between infant and neonatal mortality rate and the three environmental patterns which categorize the census blocks after the classification was performed using a standard Poisson regression model for count data after checking the assumption of dispersion.ResultsBased on geographic indicators, three environmental patterns were identified. We found environmental inequalities and social health inequalities in Nice metropolitan area. Moreover these inequalities are counterbalance by the close proximity of deprived census blocks to healthcare facilities related to mother and newborn. So therefore we demonstrate no environmental health inequalities related to infant and neonatal mortality.ConclusionExamination of patterns of social, environmental and in relation with healthcare access is useful to identify census blocks with needs and their effects on health. Similar analyzes could be implemented and considered in other cities or related to other birth outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.