The thioester surrogate 3,4-diaminobenzoic acid (Dbz) facilitates the efficient synthesis of peptide thioesters by Fmoc chemistry solid phase peptide synthesis and the optional attachment of a solubility tag at the C-terminus. The protection of the partially deactivated ortho-amine of Dbz is necessary to obtain contamination-free peptide synthesis. The reported carbamate protecting groups promote a serious side reaction, benzimidazolinone formation. Herein we introduce the Boc-protected Dbz that prevents the benzimidazolinone formation, leading to clean peptide o-aminoanilides suitable for the total chemical synthesis of proteins.
Sirtuins (PfSIR2A and PfSIR2B) are implicated to play pivotal roles in the silencing of sub‐telomeric genes and the maintenance of telomere length in P. falciparum 3D7 strain. Here, we identify the key factors that regulate the cellular abundance and activity of these two histone deacetylases. Our results demonstrate that PfSIR2A and PfSIR2B are transcriptionally downregulated at the mid‐ring stage in response to febrile temperature. We found that the molecular chaperone PfHsp90 acts as a repressor of PfSIR2A & B transcription. By virtue of its presence in the PfSIR2A & B promoter proximal regions PfHsp90 helps recruiting H3K9me3, conferring heterochromatic state, and thereby leading to the downregulation of PfSIR2A & B transcription. Such transcriptional downregulation can be reversed by the addition of 17‐(allylamino)‐17‐demethoxygeldanamycin or Radicicol, two potent inhibitors of PfHsp90. The reduced occupancy of PfSir2 at sub‐telomeric var promoters leads to the de‐repression of var genes. Thus, here we uncover how exposure to febrile temperature, a hallmark of malaria, enables the parasites to manipulate the expression of the two prominent epigenetic modifiers PfSir2A and PfSir2B.
Recently, Hsp90 functional loss has been linked to aneuploidy; however, until now none of the components of sister chromatid cohesion (SCC) have been demonstrated as the putative clients of Hsp90. In this study, we have established that Chl1, the protein which is involved in maintaining sister chromatid cohesion as well as in preventing chromosome loss, is a direct client of Hsp90. Thus, with understanding of the molecular mechanism, how Hsp90 controls the cohesion machinery might reveal new insights which can be exploited further for attenuation of tumorigenesis.
DNA damage-induced Rad51 focus formation is the hallmark of homologous recombination-mediated DNA repair. Earlier, we reported that Rad51 physically interacts with Hsp90, and under the condition of Hsp90 inhibition, it undergoes proteasomal degradation. Here, we show that the dynamic interaction between Rad51 and Hsp90 is crucial for the DNA damage-induced nuclear function of Rad51. Guided by a bioinformatics study, we generated a single mutant of Rad51, which resides at the N-terminal domain, outside the ATPase core domain. The mutant with an E to L change at residue 108 (Rad51E108L) was predicted to bind more strongly with Hsp90 than the wild-type (Rad51WT). A coimmunoprecipitation study demonstrated that there exists a distinct difference between the in vivo associations of Rad51WT-Hsp90 and of Rad51E108L-Hsp90. We found that upon DNA damage, the association between Rad51WT and Hsp90 was significantly reduced compared to that in the undamaged condition. However, the mutant Rad51E108L remained tightly associated with Hsp90 even after DNA damage. Consequently, the recruitment of Rad51E108L to the double-stranded broken ends was reduced significantly. The E108L-rad51 strain manifested severe sensitivity toward methyl methanesulfonate (MMS) and a complete loss of gene conversion efficiency, a phenotype similar to that of the Δrad51 strain. Previously, some of the N-terminal domain mutants of Rad51 were identified in a screen for a Rad51 interaction-deficient mutant; however, our study shows that Rad51E108L is not defective either in the self-interaction or its interaction with the members of the Rad52 epistatic group. Our study thus identifies a novel mutant of Rad51 which, owing to its greater association with Hsp90, exhibits a severe DNA repair defect. IMPORTANCE Rad51-mediated homologous recombination is the major mechanism for repairing DNA double-strand break (DSB) repair in cancer cells. Thus, regulating Rad51 activity could be an attractive target. The sequential assembly and disassembly of Rad51 to the broken DNA ends depend on reversible protein-protein interactions. Here, we discovered that a dynamic interaction with molecular chaperone Hsp90 is one such regulatory event that governs the recruitment of Rad51 onto the damaged DNA. We uncovered that Rad51 associates with Hsp90, and upon DNA damage, this complex dissociates to facilitate the loading of Rad51 onto broken DNA. In a mutant where such dissociation is incomplete, the occupancy of Rad51 at the broken DNA is partial, which results in inefficient DNA repair. Thus, it is reasonable to propose that any small molecule that may alter the dynamics of the Rad51-Hsp90 interaction is likely to impact DSB repair in cancer cells.
The DNA recombinase Rad51 from human malaria parasite Plasmodium falciparum has emerged as a potential drug target due to its central role in the homologous recombination (HR) mediated double strand break (DSB) repair pathway. Inhibition of the ATPase and strand exchange activity of PfRad51, by a small molecule inhibitor B02 (3-(Phenylmethyl)-2-[(1E)-2-(3-pyridinyl)ethenyl]-4(3H)-quinazolinone), renders the parasite more sensitive towards the genotoxic agents. Here, we investigated whether the inhibition of the molecular chaperone PfHsp90 potentiates the anti-malarial action of B02. We found that PfHsp90 inhibitor 17-AAG ( 17 -(Allylamino)- 17 -demethoxygeldanamycin) exhibits strong synergism with B02 in both drug sensitive (3D7) and multi-drug resistant (Dd2) P. falciparum parasites. 17-AAG causes more than 200-fold decrease in the half-maximal inhibitory concentration (IC 50 ) of B02 in 3D7 parasites. Our results provide mechanistic insights into such profound synergism between 17-AAG and B02. We report that PfHsp90 physically interacts with PfRad51 and promotes the UV irradiation-induced DNA repair activity of PfRad51 by controlling its stability. We find that 17-AAG reduces PfRad51 protein levels by accelerating proteasomal degradation. Consequently, PfHsp90 inhibition renders the parasites more susceptible to the potent DNA damaging agent methyl-methane-sulfonate (MMS) in a dose dependent manner. Thus, our study provides a rationale of targeting PfHsp90 along with the recombinase PfRad51 for controlling malaria propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.