& Key message This study assessed the effect of ecological variables on tree allometry and provides more accurate aboveground biomass (AGB) models through the involvement of large samples representing major islands, biogeographical
Although accurate estimates of biomass loss during peat fires, and recovery over time, are critical in understanding net peat ecosystem carbon balance, empirical data to inform carbon models are scarce. During the 2019 dry season, fires burned through 133,631 ha of degraded peatlands of Central Kalimantan. This study reports carbon loss from surface fuels and the top peat layer of 18.5 Mg C ha−1 (3.5 from surface fuels and 15.0 from root/peat layer), releasing an average of 2.5 Gg (range 1.8–3.1 Gg) carbon in these fires. Peat surface change measurements over one month, as the fires continued to smolder, indicated that about 20 cm of the surface was lost to combustion of peat and fern rhizomes, roots and recently incorporated organic residues that we sampled as the top peat layer. Time series analysis of live green vegetation (NDVI trend), combined with field observations of vegetation recovery two years after the fires, indicated that vegetation recovery equivalent to fire-released carbon is likely to occur around 3 years after fires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.