Thunderstorms are dangerous and it has increased due to highly precipitation and cloud cover density in the Mesoscale Convective System area. Climate change is one of the causes to increasing the thunderstorm activity. The present studies aimed to estimate the thunderstorm activity at the Tawau area of Sabah, Malaysia based on the Multiple Linear Regression (MLR), Dvorak technique, and Adaptive Neuro-Fuzzy Inference System (ANFIS). A combination of up to six inputs of meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), Cloud (C), Precipitable Water Vapor (PWV), and Precipitation (Pr) on a daily basis in 2012 were examined in the training process to find the best configuration system. By using Jacobi algorithm, H and PWV were identified to be correlated well with thunderstorms. Based on the two inputs that have been identified, the Sugeno method was applied to develop a Fuzzy Inference System. The model demonstrated that the thunderstorm activities during intermonsoon are detected higher than the other seasons. This model is comparable to the thunderstorm data that was collected manually with percent error below 50%.
Abstract. This paper is aimed to develop a numerical model with the use of a nonlinear model to estimate the thunderstorm activity. Meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), cloud (C), Precipitable Water Vapor (PWV), and precipitation on a daily basis were used in the proposed method. The model was constructed with six configurations of input and one target output. The output tested in this work is the thunderstorm event when one-year data is used. Results showed that the model works well in estimating thunderstorm activities with the maximum epoch reaching 1000 iterations and the percent error was found below 50%. The model also found that the thunderstorm activities in May and October are detected higher than the other months due to the inter-monsoon season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.