Background
Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging.
Methods and Results
In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001).
Conclusions
Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy.
Background
Multi-detector cardiac computed tomography (CT) allows for simultaneous assessment of aortic distensibility (AD), coronary atherosclerosis, and thoracic aortic atherosclerosis.
Objectives
We sought to determine the relationship of AD to the presence and morphological features in coronary and thoracic atherosclerosis.
Methods
In 293 patients (53±12 years, 63% male), retrospectively-gated MDCT were performed. We measured intraluminal aortic areas across 10 phases of the cardiac cycle (multiphase reformation 10% increments) at pre-defined locations to calculate the ascending, descending, and local AD (at locations of thoracic plaque). AD was calculated as maximum change in area/(minimum area × pulse pressure). Coronary and thoracic plaques were categorized as calcified, mixed, or non-calcified.
Results
Ascending and descending AD were lower in patients with any coronary plaque, calcified or mixed plaque than those without (all p<0.0001) but not with non-calcified coronary plaque (p≥0.46). Per 1 mmHg−110−3 increase in ascending and descending AD, there was an 18–29% adjusted risk reduction for having any coronary, calcified plaque, or mixed coronary plaque (ascending AD only) (all p≤0.04). AD was not associated with non-calcified coronary plaque or when age was added to the models (all p>0.39). Local AD was lower at locations of calcified and mixed thoracic plaque when compared to non-calcified thoracic atherosclerosis (p<0.04).
Conclusions
A stiffer, less distensible aorta is associated with coronary and thoracic atherosclerosis, particularly in the presence of calcified and mixed plaques, suggesting that the mechanism of atherosclerosis in small and large vessels is similar and influenced by advancing age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.