A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR'')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR'') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.
The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.
Two calixarene-based bis-alkynyl-bridged Au(I) isonitrile complexes with two different crown ether pendants, [{calix[4]arene-(OCH(2)CONH-C(6)H(4)C[triple bond]C)(2)}{Au(CNR)}(2)] (R=benzo[15]crown-5 (1); R=benzo[18]crown-6 (2)), together with their related crown-free analogue 3 (R=C(6)H(3)(OMe)(2)-3,4) and a mononuclear gold(I) complex 4 with benzo[15]crown-5 pendant, have been designed and synthesized, and their photophysical properties have been studied. The X-ray structure of the ligand, calix[4]arene-(OCH(2)CONH-C(6)H(4)C[triple bond]CH)(2) has been determined. The cation-binding properties of these complexes with various metal ions have been studied using UV/Vis, emission, (1)H NMR, and ESI-MS techniques, and DFT calculations. A new low-energy emission band associated with AuAu interaction could be switched on upon formation of the metal ion-bound adduct in a sandwich fashion.
A new class of luminescent alkynylplatinum(II) complexes of tridentate bis(N-alkylbenzimidazol-2'-yl)pyridines (bzimpy), [Pt(R,R'-bzimpy)(C[triple chemical bond]C-R'')]X (X=PF(6), OTf), and one of their chloro precursor complexes, [Pt(R,R'-bzimpy)Cl]PF(6), have been synthesized and characterized; one of the alkynyl complexes has also been structurally characterized by X-ray crystallography. Electrochemical studies showed that the oxidation wave is alkynyl ligand-based in nature with some mixing of the metal center-based contribution, whereas the two quasi-reversible reduction couples are mainly bzimpy-based reductions. The electronic absorption and luminescence properties of the complexes have also been investigated. In solution, the high-energy and intense absorption bands are assigned as the pi-pi* intraligand (IL) transitions of the bzimpy and alkynyl ligands, whereas the low-energy and moderately intense absorptions are assigned to an admixture of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(R,R'-bzimpy)) and ligand-to-ligand charge-transfer (LLCT) (pi(C[triple chemical bond]C-R'')-->pi*(R,R'-bzimpy)) transitions. Upon variation of the electronic effects of the arylalkynyl ligands, vibronic-structured or structureless emission bands, originating from triplet metal-perturbed intraligand (IL) or an admixture of triplet metal-to-ligand charge-transfer (MLCT) and ligand-to-ligand charge-transfer (LLCT) excited states respectively, were observed in solution. Interestingly, two of the complexes showed a dual luminescence that was sensitive to the polarity of the solvents. Upon cooling from 298 K to 155 K, drastic color, UV/Vis, and luminescence changes were observed in a butyronitrile solution of 1, and were ascribed to the formation of aggregate species through PtPt and pi-pi stacking interactions. DFT and time-dependent DFT (TD-DFT) calculations have been performed to verify and elucidate the results of the electrochemical and photophysical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.