This article presents a comprehensive analysis of the progress in palladium-catalyzed coupling reactions, with an emphasis on how ligand characteristics affect the chemoselectivity of aryl (pseudo)halides.
Tosyloxy- and mesyloxyflavones derived from abundant and biologically important hydroxyflavones were used to synthesize a series of functionalized flavones through versatile palladium-catalyzed cross-coupling reactions. A Pd(OAc)2/2-[2-(dicyclohexylphosphino)phenyl]-1-methyl-1H-indole system effectively catalyzed the reactions of a broad range of tosyloxy- and mesyloxyflavones as electrophilic coupling partners with various nucleophiles to give the corresponding products in good to excellent yields. Catalyst loadings of as little as 0.1 mol% Pd were successfully used. Importantly, we demonstrated that this protocol provided a significantly improved efficiency in the synthesis of a potential chromen-4-one-based analogue of a potent inhibitor of DNA-dependent protein kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.