A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiply-connected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo . We also show that our method generalizes previous approaches based on Kullback cross-entropy. Experiments have been conducted to demonstrate the feasibility of the approach.
Target-based sentiment analysis involves opinion target extraction and target sentiment classification. However, most of the existing works usually studied one of these two sub-tasks alone, which hinders their practical use. This paper aims to solve the complete task of target-based sentiment analysis in an end-to-end fashion, and presents a novel unified model which applies a unified tagging scheme. Our framework involves two stacked recurrent neural networks: The upper one predicts the unified tags to produce the final output results of the primary target-based sentiment analysis; The lower one performs an auxiliary target boundary prediction aiming at guiding the upper network to improve the performance of the primary task. To explore the inter-task dependency, we propose to explicitly model the constrained transitions from target boundaries to target sentiment polarities. We also propose to maintain the sentiment consistency within an opinion target via a gate mechanism which models the relation between the features for the current word and the previous word. We conduct extensive experiments on three benchmark datasets and our framework achieves consistently superior results.
The dominant graph-to-sequence transduction models employ graph neural networks for graph representation learning, where the structural information is reflected by the receptive field of neurons. Unlike graph neural networks that restrict the information exchange between immediate neighborhood, we propose a new model, known as Graph Transformer, that uses explicit relation encoding and allows direct communication between two distant nodes. It provides a more efficient way for global graph structure modeling. Experiments on the applications of text generation from Abstract Meaning Representation (AMR) and syntax-based neural machine translation show the superiority of our proposed model. Specifically, our model achieves 27.4 BLEU on LDC2015E86 and 29.7 BLEU on LDC2017T10 for AMR-to-text generation, outperforming the state-of-the-art results by up to 2.2 points. On the syntax-based translation tasks, our model establishes new single-model state-of-the-art BLEU scores, 21.3 for English-to-German and 14.1 for English-to-Czech, improving over the existing best results, including ensembles, by over 1 BLEU.
Aspect Term Extraction (ATE), a key sub-task in Aspect-Based Sentiment Analysis, aims to extract explicit aspect expressions from online user reviews. We present a new framework for tackling ATE. It can exploit two useful clues, namely opinion summary and aspect detection history. Opinion summary is distilled from the whole input sentence, conditioned on each current token for aspect prediction, and thus the tailor-made summary can help aspect prediction on this token. Another clue is the information of aspect detection history, and it is distilled from the previous aspect predictions so as to leverage the coordinate structure and tagging schema constraints to upgrade the aspect prediction. Experimental results over four benchmark datasets clearly demonstrate that our framework can outperform all state-of-the-art methods. 1
We propose an abstraction-based multidocument summarization framework that can construct new sentences by exploring more fine-grained syntactic units than sentences, namely, noun/verb phrases. Different from existing abstraction-based approaches, our method first constructs a pool of concepts and facts represented by phrases from the input documents. Then new sentences are generated by selecting and merging informative phrases to maximize the salience of phrases and meanwhile satisfy the sentence construction constraints. We employ integer linear optimization for conducting phrase selection and merging simultaneously in order to achieve the global optimal solution for a summary. Experimental results on the benchmark data set TAC 2011 show that our framework outperforms the state-ofthe-art models under automated pyramid evaluation metric, and achieves reasonably well results on manual linguistic quality evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.