With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on non-linear leastsquares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.
In this paper different topologies of populations of FitzHugh-Nagumo neurons have been introduce to investigate the effect of high-frequency driving on the response of neuron populations to a subthreshold low-frequency signal. We show that optimal amplitude of high-frequency driving enhances the response of neuron populations to a subthreshold low-frequency input and the optimal amplitude dependences on the connection among the neurons. By analyzing several kinds of topology (i.e., random and small world) different behaviors have been observed. Several topologies behave in an optimal way with respect to the range of low-frequency amplitude leading to an improvement in the stimulus response coherence, while others with respect to the maximum values of the performance index. However, the best results in terms of both the suitable amplitude of high-frequency driving and high stimulus response coherence have been obtained when the neurons have been connected in a small-world topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.