The threat of a pandemic outbreak of influenza virus A H5N1 has become a major concern worldwide. The nucleoprotein (NP) of the virus binds the RNA genome and acts as a key adaptor between the virus and the host cell. It, therefore, plays an important structural and functional role and represents an attractive drug target. Here, we report the 3.3-A crystal structure of H5N1 NP, which is composed of a head domain, a body domain, and a tail loop. Our structure resolves the important linker segments (residues 397-401, 429-437) that connect the tail loop with the remainder of the molecule and a flexible, basic loop (residues 73-91) located in an arginine-rich groove surrounding Arg150. Using surface plasmon resonance, we found the basic loop and arginine-rich groove, but mostly a protruding element containing Arg174 and Arg175, to be important in RNA binding by NP. We also used our crystal structure to build a ring-shaped assembly of nine NP subunits to model the miniribonucleoprotein particle previously visualized by electron microscopy. Our study of H5N1 NP provides insight into the oligomerization interface and the RNA-binding groove, which are attractive drug targets, and it identifies the epitopes that might be used for universal vaccine development.
A number of viral gene products are capable of triggering apoptotic cell death through interfering with cellular signaling cascades, including the Akt kinase pathway. In this study, the pro-apoptotic role of the SARS-CoV Membrane (M) structural protein is described. We found that the SARS-CoV M protein induced apoptosis in both HEK293T cells and transgenic Drosophila. We further showed that M protein-induced apoptosis involved mitochondrial release of cytochrome c protein, and could be suppressed by caspase inhibitors. Over-expression of M caused a dominant rough-eye phenotype in adult Drosophila. By performing a forward genetic modifier screen, we identified phosphoinositide-dependent kinase-1 (PDK-1) as a dominant suppressor of M-induced apoptotic cell death. Both PDK-1 and Akt kinases play essential roles in the cell survival signaling pathway. Altogether, our data show that SARS-CoV M protein induces apoptosis through the modulation of the cellular Akt pro-survival pathway and mitochondrial cytochrome c release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.