A von Neumann algebra is called hyperfinite if it is the weak closure of an increasing sequence of finite-dimensional von Neumann subalgebras. For a separable infinite-dimensional Hilbert space the following is known: there exist hyperfinite and non-hyperfinite factors of type II1 (4, Theorem 16’), and of type III (8, Theorem 1); all hyperfinite factors of type Hi are isomorphic (4, Theorem 14); there exist uncountably many non-isomorphic hyperfinite factors of type III (7, Theorem 4.8); there exist two nonisomorphic non-hyperfinite factors of type II1 (10), and of type III (11). In this paper we will show that on a separable infinite-dimensional Hilbert space there exist three non-isomorphic non-hyperfinite factors of type II1 (Theorem 2), and of type III (Theorem 3).Section 1 contains an exposition of crossed product, which is developed mainly for the construction of factors of type III in § 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.