ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
By employing broadband femtosecond Kerr-gated time-resolved fluorescence (KTRF) and transient absorption (TA) techniques, we report the first (to our knowledge) femtosecond combined time- and wavelength-resolved study on an ultraviolet-excited nucleoside and a single-stranded oligonucleotide (namely adenosine (Ado) and single-stranded adenine oligomer (dA)(20)) in aqueous solution. With the advantages of the ultrafast time resolution, the broad spectral and temporal probe window, and a high sensitivity, our KTRF and TA results enable the real time monitoring and spectral characterization of the excited-state relaxation processes of the Ado nucleoside and (dA)(20) oligonucleotide investigated. The temporal evolution of the 267 nm excited Ado KTRF spectra indicates there are two emitting components with lifetimes of approximately 0.13 ps and approximately 0.45 ps associated with the L(a) and L(b) pipi* excited states, respectively. These Ado results reveal no obvious evidence for the involvement of the npi* state along the irradiative internal conversion pathway. A distinct mechanism involving only the two pipi* states has been proposed for the ultrafast Ado deactivation dynamics in aqueous solution. The time dependence of the 267 nm excited (dA)(20) KTRF and TA spectra reveals temporal evolution from an ultrafast "A-like" state (with a approximately 0.39 ps decay time) to a relatively long-lived E(1) "excimer" (approximately 4.3 ps decay time) and an E(2) "excimer-like" (approximately 182 ps decay time) state. The "A-like" state has a spectral character closely resembling the excited state of Ado. Comparison of the spectral evolution between the results for Ado and (dA)(20) provides unequivocal evidence for the local excitation character of the initially photoexcited (dA)(20). The rapid transformation of the locally excited (dA)(20) component into the delocalized E(1) "excimer" state which then further evolves into the E(2) "excimer-like" state indicates that base stacking has a high ability to modify the excited-state deactivation pathway. This modification appears to occur by suppressing the internal conversion pathway of an individually excited base component where the stacking interaction mediates efficient interbase energy transfer and promotes formation of the collective excited states. This feature of the local excitation that is subsequently followed by rapid energy delocalization into nearby bases may occur in many base multimer systems. Our results provide an important new contribution to better understanding DNA photophysics.
Defects in three different types of ZnO nanostructures before and after annealing under different conditions were studied. The annealing atmosphere and temperature were found to strongly affect the yellow and orange-red defect emissions, while green emission was not significantly affected by annealing. The defect emissions exhibited a strong dependence on the temperature and excitation wavelength, with some defect emissions observable only at low temperatures and for certain excitation wavelengths. The yellow emission in samples prepared by a hydrothermal method is likely due to the presence of OH groups, instead of the commonly assumed interstitial oxygen defect. The green and orange-red emissions are likely due to donor acceptor transitions involving defect complexes, which likely include zinc vacancy complexes in the case of orange-red emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.