We present a single-tracer method for the study of the pentose phosphate pathway (PPP) using [1,2-13C2]glucose and mass isotopomer analysis. The metabolism of [1,2-13C2]glucose by the glucose-6-phosphate dehydrogenase, transketolase (TK), and transaldolase (TA) reactions results in unique pentose and lactate isotopomers with either one or two13C substitutions. The distribution of these isotopomers was used to estimate parameters of the PPP using the model of Katz and Rognstad (J. Katz and R. Rognstad. Biochemistry 6: 2227–2247, 1967). Mass and position isotopomers of ribose, and lactate and palmitate (products from triose phosphate) from human hepatoma cells (Hep G2) incubated with 30% enriched [1,2-13C2]glucose were determined using gas chromatography-mass spectrometry. After 24–72 h incubation, 1.9% of lactate molecules in the medium contained one 13C substitution ( m 1) and 10% contained two 13C substitutions ( m 2). A similar m 1-to- m 2ratio was found in palmitate as expected. Pentose cycle (PC) activity determined from incubation with [1,2-13C2]glucose was 5.73 ± 0.52% of the glucose flux, which was identical to the value of PC (5.55 ± 0.73%) determined by separate incubations with [1-13C] and [6-13C]glucose.13C was found to be distributed in four ribose isotopomers ([1-13C]-, [5-13C]-, [1,2-13C2]-, and [4,5-13C2]ribose). The observed ribose isotopomer distribution was best matched with that provided from simulation by substituting 0.032 for TK and 0.85 for TA activity relative to glucose uptake into the model of Katz and Rognstad. The use of [1,2-13C2]glucose not only permits the determination of PC but also allows estimation of relative rates through the TK and TA reactions.
Thiamine deficiency frequently occurs in patients with advanced cancer and therefore thiamine supplementation is used as nutritional support. Thiamine (vitamin B1) is metabolized to thiamine pyrophosphate, the cofactor of transketolase, which is involved in ribose synthesis, necessary for cell replication. Thus, it is important to determine whether the benefits of thiamine supplementation outweigh the risks of tumor proliferation. Using oxythiamine (an irreversible inhibitor of transketolase) and metabolic control analysis (MCA) methods, we measured an in vivo tumour growth control coefficient of 0.9 for the thiamine-transketolase complex in mice with Ehrlich's ascites tumour. Thus, transketolase enzyme and thiamine clearly determine cell proliferation in the Ehrlich's ascites tumour model. This high control coefficient allows us to predict that in advanced tumours, which are commonly thiamine deficient, supplementation of thiamine could significantly increase tumour growth through transketolase activation. The effect of thiamine supplementation on tumour proliferation was demonstrated by in vivo experiments in mice with the ascites tumour. Thiamine supplementation in doses between 12.5 and 250 times the recommended dietary allowance (RDA) for mice were administered starting on day four of tumour inoculation. We observed a high stimulatory effect on tumour growth of 164% compared to controls at a thiamine dose of 25 times the RDA. This growth stimulatory effect was predicted on the basis of correction of the pre-existing level of thiamine deficiency (42%), as assayed by the cofactor/ enzyme ratio. Interestingly, at very high overdoses of thiamine, < 2500 times the RDA, thiamine supplementation had the opposite effect and caused 10% inhibition of tumour growth. This effect was heightened, resulting in a 36% decrease, when thiamine supplementation was administered from the 7th day prior to tumour inoculation. Our results show that thiamine supplementation sufficient to correct existing thiamine deficiency stimulates tumour proliferation as predicted by MCA. The tumour inhibitory effect at high doses of thiamine is unexplained and merits further study.Keywords: transketolase; thiamine; Ehrlich's ascites tumour; metabolic control analysis.One of the most disturbing facts about cancer is that prevalence rates are still rising despite the resources that have been developed over the last three decades for understanding and controlling it more efficiently [1]. Cancer is currently seen as a complex genetic phenomenon characterized by breakdown in the integrity or function of cellular growth-regulating genes and their signalling pathways [2,3]. The increasing worldwide cancer epidemic raises the need for novel approaches to treating it, not only as a genetic abnormality but also as a metabolic disease. As tumour cells are metabolically unbalanced with respect to surrounding tissue, an alternative approach to new cancer drug development is the analysis of metabolic reaction network in tumour cells and determining the contr...
Angiogenesis is a fundamental process to normal and abnormal tissue growth and repair, which consists of recruiting endothelial cells toward an angiogenic stimulus. The cells subsequently proliferate and differentiate to form endothelial tubes and capillary-like structures. Little is known about the metabolic adaptation of endothelial cells through such a transformation. We studied the metabolic changes of endothelial cell activation by growth factors using human umbilical vein endothelial cells (HUVECs), [1,2-(13)C(2)]-glucose and mass isotopomer distribution analysis. The metabolism of [1,2-(13)C(2)]-glucose by HUVEC allows us to trace many of the main glucose metabolic pathways, including glycogen synthesis, the pentose cycle and the glycolytic pathways. So we established that these pathways were crucial to endothelial cell proliferation under vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) stimulation. A specific VEGF receptor-2 inhibitor demonstrated the importance of glycogen metabolism and pentose cycle pathway. Furthermore, we showed that glycogen was depleted in a low glucose medium, but conserved under hypoxic conditions. Finally, we demonstrated that direct inhibition of key enzymes to glycogen metabolism and pentose phosphate pathways reduced HUVEC viability and migration. In this regard, inhibitors of these pathways have been shown to be effective antitumoral agents. To sum up, our data suggest that the inhibition of metabolic pathways offers a novel and powerful therapeutic approach, which simultaneously inhibits tumor cell proliferation and tumor-induced angiogenesis.
Stable isotope-based dynamic metabolic profiling is applied in this paper to elucidate the mechanism by which butyrate induces cell differentiation in HT29 cells. We utilized butyrate-sensitive (HT29) cells incubated with [1,2-13 C 2 ]glucose or [1,2-13 C 2 ]butyrate as single tracers to observe the changes in metabolic fluxes in these cells. In HT29 cells, increasing concentrations of butyrate inhibited glucose uptake, glucose oxidation, and nucleic acid ribose synthesis in a dose-dependent fashion. Glucose carbon utilization for de novo fatty acid synthesis and tricarboxylic acid cycle flux was replaced by butyrate. We also demonstrated that these changes are not present in butyrate-resistant pancreatic adenocarcinoma MIA cells. The results suggest that the mechanism by which colon carcinoma cells acquire a differentiated phenotype is through a replacement of glucose for butyrate as the main carbon source for macromolecule biosynthesis and energy production. This provides a better understanding of cell differentiation through metabolic adaptive changes in response to butyrate in HT29 cells, demonstrating that variations in metabolic pathway substrate flow are powerful regulators of tumor cell proliferation and differentiation.Butyrate is a four-carbon short chain fatty acid produced by fermentation of fiber polysaccharides by the intestinal microflora of the human colon (1). Butyrate is utilized primarily by colon epithelial cells as a substrate for energy production (2). Previous studies demonstrated that deficiency in the availability or utilization of butyrate causes colitis and may be involved in colon carcinogenesis (3).Butyrate has been shown to induce dose dependent differentiation of various malignant cell lines (4 -6). Studies performed in recent years in colorectal cancer have shown that there is a cell cycle arrest in G 1 phase due to the activation of cyclin D3 and p21Waf1/Cip1 after incubation with butyrate (7). These studies implicate many known cell signaling events in mediating the cell-differentiating effect of butyrate, including cyclin-dependent kinase inhibitors (8), mitogen-activated phosphorylase kinases (9), down-regulation of c-myc (10), and the proinflammatory transcription factor NF-B (11, 12). Among the genes studied using gene array technology, the most significantly affected were those of transcription factors related to cell growth, apoptosis, and oxidative metabolism (13,14). How butyrate induces these specific molecular changes is mostly unknown. To assess how known genetic modifications can be translated into metabolic changes characteristic of differentiated cells, techniques allowing analysis of the levels of low molecular weight compounds are required. Stable isotopebased dynamic metabolic profiling using gas chromatography/ mass spectrometry (GC/MS) 1 is a new tool with a largely untapped potential in the field of functional genomics. In this paper we demonstrate the usefulness of this technique to elucidate the metabolic mechanism underlying butyrate induced cell different...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.