The
Bacteroides fragilis
(
B. fragilis
) produce biofilm for colonisation in the intestinal tract can cause a series of inflammatory reactions due to
B. fragilis
toxin (BFT) which can lead to chronic intestinal inflammation and tissue injury and play a crucial role leading to colorectal cancer (CRC). The enterotoxigenic
B. fragilis
(ETBF) forms biofilm and produce toxin and play a role in CRC, whereas the non-toxigenic
B. fragilis
(NTBF) does not produce toxin. The ETBF triggers the expression of cyclooxygenase (COX)-2 that releases PGE2 for inducing inflammation and control cell proliferation. From chronic intestinal inflammation to cancer development, it involves signal transducers and activators of transcription (STAT)3 activation. STAT3 activates by the interaction between epithelial cells and BFT. Thus, regulatory T-cell (Tregs) will activates and reduce interleukin (IL)-2 amount. As the level of IL-2 drops, T-helper (T
h
17) cells are generated leading to increase in IL-17 levels. IL-17 is implicated in early intestinal inflammation and promotes cancer cell survival and proliferation and consequently triggers IL-6 production that activate STAT3 pathway. Additionally, BFT degrades E-cadherin, hence alteration of signalling pathways can upregulate spermine oxidase leading to cell morphology and promote carcinogenesis and irreversible DNA damage. Patient with familial adenomatous polyposis (FAP) disease displays a high level of tumour load in the colon. This disease is caused by germline mutation of the
adenomatous polyposis coli
(
APC
) gene that increases bacterial adherence to the mucosa layer. Mutated-
APC
gene genotype with ETBF increases the chances of CRC development. Therefore, the colonisation of the ETBF in the intestinal tract depicts tumour aetiology can result in risk of hostility and effect on human health.
The 3D-printed iChip version made from thermoplastics or photopolymers can isolate microbial populations of a peat swamp in situ with a population profile different from that isolated via the standard in vitro Petri dish cultivation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.